Guide to IP Layer Network
Administration with Linux

Version 0.4.5

Martin A. Brown

Guide to IP Layer Network Administration with Linux: Version 0.4.5
Martin A. Brown

Publication date 2007-Mar-14
Copyright © 2002, 2003 Martin A. Brown

Abstract

This guide provides an overview of many of the tools available for 1P network administration of the linux operating
system, kernelsin the 2.2 and 2.4 series. It covers Ethernet, ARP, IP routing, NAT, and other topics central to the
management of |P networks.

Table of Contents

Fg11geTo (¥ oi (oo E PSP OP PP PPPRTR Xiv
1. Target Audience, Assumptions, and Recommendationscc.ovevueieiiiieiineeiieeeieenn Xiv
2. CONVENTIONS ..ottt e ettt ettt e et ettt e e et e e et e e et e eb e et et e e e eb b n e e e ena e e eenenns Xiv
3. BUGS @N0 ROBAMAEPcevviieeiiiieee ettt ettt e e et e et e e e e e aees XV
4. Technical Note and Summary of APProachcoouuiiiiiiiiiiei e XV
5. Acknowledgements and Request for REMArkScoouvviiiiiiiiiiiiiiie e XV

[O Tolc oS PP PR 1
1. BSIC 1P CONNECLIVITY ..uuieiiitiiee ettt et et e e 4

1. 1P Networking Control FilEScoouiiiiiiiii e 4
2. Reading Routes and 1P INfOrMationc.c.uuioiiiiiiiiiiie e 5
2.1. Sending Packets to the Local N&tWOrKcooeveviiiiiiiiiiiiiiicce e, 7

2.2. Sending Packets to Unknown Networks Through the Default Gateway 8

2.3. Static ROULES 10 NEIWOIKSeiiiiiieiiiii e e 9

3. Changing 1P Addresses and ROULEScoouuuieiiiiiieieiie e 9
3.1. Changing the IP 0N amaChingc.oviiiiiiiiiiii e 10

3.2. Setting the Default ROULEouuiiiiiiieceii e 11

3.3. Adding and removing a StatiC rOULEcceevuneieiiiieeiiii e e 12

A, CONCIUSION ..ttt et e e 13
2 B NEINEL ... 15
1. Address Resolution Protocol (ARP)civeiiiiiii e 15
1.1. Overview of Address Resolution Protocolcceveeeiiiiieiiiiiiiciiiieeees 15

1.2. THE ARP CBCNE ...ooviiciii e 18

1.3, ARP SUPPIESSION ...uiiiiieieieeii ettt ettt e e 20

1.4. The ARP FIUX Problem ... 20

2. PIOXY ARP oo 23
S ARP FIEEIING .ot 24
4. Connecting to an Ethernet 802.10 VLAN ...cooiiiiiiiiiiieeei e 25
5. Link Aggregation and High Availability with Bondingccoocevviiiiiiiiinneiiinnnnn. 25
5.1, LinK AQOregationcoeuuuueiiiiiieeeiie ettt 26

5.2. High Availabilitycoooemiiiiiiii e 27

S BIIAGING ..t 28
1. ConCEPtS OF BridgiNGcccevruieiiiiie i 28
2. Bridging and Spanning Tree ProtOCO!ccovuuuiieiiiiieeiiie e 28
3. Bridging and Packet Filteringccouuiiiiiiiieiii e 28
4. Traffic Control With @ Bridgecveeuei i 28
B BTADIES ...t 28
A, TP ROULING .o etteeeitt ettt ettt e ettt e e ettt e e et et e e et eab e e e e ent e e e eenaaeeee 29
1. Introduction t0o LinUX ROULINGuuuiiiiriiiiiiiiieeeeii e 29
2. Routing to Locally Connected NEtWOIKScovvviiiiiiiiieiiiie e 31
3. Sending Packets Through @ GaLEWEYuieeiieiiieeiiiiieeeeie e 32
4. Operating @S & ROULEYcoiiiiieiiiii ettt e e e e e e e e e 33
5. ROULE SEIECHION ...ttt e e 33
5.1. The COMMON CBSEvuieiiiii ettt et et e et eeeeae e eeees 34

5.2. The WHOIE SEOIYeiiiiiieiiii e 34

5.3 SUMIMEIY .eeiiiie et ae s 36

6. SOUrce AdAress SEIECHIONcouuueiiii e 36
7. ROULING CACNE ... 37
8. ROULING TADIES ... 38
8.1. Routing Table Entries (ROULES)cccvvuniiiiiiiieeiiii et 40

8.2. The Local Routing Tableccoouuiiiiiiiiiii e 42

8.3. The Main ROULiNG Tableccouuiieiiii e 43

Guideto IP Layer Network
Administration with Linux

9. Routing Policy Databhase (RPDB)c..oiiiiiiiiiiicii e 43

10. ICMP @n0 ROULING ..uiviiiiieeiee e e e e e e e e e e e e e e e e st e e e eeaens 45

10.1. MTU, MSS, @nNd ICMP ...t 45

10.2. ICMP Redirects and ROULINGuveviniiiiiiiiiieeiii e e e e een 45

5. Network Address Translation (NAT) ..o e e e e e e e 47
1. Rationale for and Introduction t0 NAT ...cooeiiiiiii e 47

2. Application Layer Protocols with Embedded Network Information 49

3. Stateless NAT WIith iProULE2cvvniii i e 49

3.1. Stateless NAT Packet Capture and Introductioncccceeveviiiiiiineiinnns 50

3.2. Stateless NAT PractiCuMocuvuiiiiiiiieeeii e 51

3.3. Conditional StAatEl@SS NATiiiiiiiiiee e eaees 51

4, Stateless NAT and Packet Filteringcooovviiiiiiiii e 52

5. Destination NAT with netfilter (DNAT) covniiiiii e 54

5.1. Port Address Trandation With DNATcoovviiiiiiiiiiieeiece e 55

6. Port Address Trandation (PAT) from USErSpaceoevvvveviiieiiiiieiiieeciieeeiieeeaiees 55

7. Transparent PAT from USEISPACEuvvuiiieiiiei e e et e e et e e e e ae e e eneeens 55

6. Masquerading and Source Network Address Trandationoeevviveiiieeiiiieiiineeieeennn, 56
1. ConCeEPLS Of SOUICE NAT e e e e ees 56

1.1. Differences Between SNAT and Masqueradingccoevevvneiiiniciiiieeinennnn. 56

1.2. Double SNAT/MaSQUEradiNgooevvuieiinieiiiie e e e e e eanes 56

2. Issues with SNAT/Masquerading and Inbound Trafficccooeviiiiiiiiiiies 56

3. Where Masquerading and SNAT Breakc.oeviiiiiiiiiiiieeiii e eee e e e e eanes 56

A = o A T o P 57
1. Rationale for and Introduction to Packet Filteringc.ccoeeeiiiiiiiiniin e, 57

1.1. History of Linux Packet Filter SUPPOItoovvviiiiiieiiiee e, 58

2. Limits and Weaknesses of Packet FIlteringccooeeviiieiiiiicii e, 58

2.1. Limits of the Usefulness of Packet Filteringcc.ccoovvviiiiiiniiineceeeenn, 58

2.2. Weaknesses of Packet Filteringooevvieiiiiiiiii e 59

2.3. Complex Network Layer Stateless Packet Flters.........ccoooceveviiiiiincinnne, 59

3. General Packet Filter REQUIFEMENESc.vuiiiiiieii e e e e 60

4. The Netfilter ArChiteCIUIrecovvuiii e e 60

4.1. Packet Filtering with iptablesccocoviiiiiiii e 60

5. Packet Filtering with ipChainsccooviiiiiiii e 60

5.1. Packet Mangling with ipchainsc.ccooiiiii i, 61

6. ProteCting @ HOSE ... covniiii e 61

7. ProteCting @ NEIWOTKc.uuiiiiiii e e e e e e e e e e e e e aaeees 61

8. FUMhEr RESOUICESueiiiiii e 61

8. StatefulNEsS aNd SEALEIESSNESScevvvieieiii e e e et e e et e eaen 63
PP 63

2. Statelessness Of [P ROULINGvvvuiiiieiii e e e e e e e e een 63

3. Netfilter ConNECtion TraCKiNgcouueiiieiiii e e e e e 63

35 PP 63
35U 63

] R o] {0 | PSP 64
9. Advanced [P Managementccuuieiuiieiiiiee e e e e e e e e e e e e e e e e e aaaas 66
1. Multiple IPs and the ARP Problemccoiiiiiiiiii e 66

2. Multiple IP Networks on one Ethernet Segmentccooeviiiiiiiiiiie i, 66

3. Breaking a network in two with proxy ARPcooiiiiiiiii e 66

4, Multiple IPS 0N @n INEEfaCeovvuiiii e e 67

5. Multiple connections to the same Ethernetccoovviiiiiii i, 68

6. MUIINOMEA HOSESeviieiiiie e 68

7. Binding to Non-1ocal AdAreSSeSc.vuiiiiiiii e 68

10. AAVANCEA [P ROULING ...cvviiiiieiie et e e e e e e e e e e e e e e e aenas 69
1. Introduction t0 PoliCy ROULINGoivvniiiiiiciii e e e e e e e 69

Guideto IP Layer Network
Administration with Linux

2. Overview of Routing and Packet Filter Interactionscccocvvvviiiiieiiiieiin e, 69
3. Using the Routing Policy Database and Multiple Routing Tablesc.coeeeeee.. 70
3.1. Using Type of Service Policy ROULINGccvuveiiieiiiiciiii e 71
3.2. Using fwmark for Policy ROULINGccuviiiiiiiiiicii e 71
3.3. Policy Routing and NAT ..o e e e 71
4. Multiple Connections to the INtErNELcovvviiiiiii e 71
4.1. Outbound traffic Using Multiple Connections to the Internet 72
4.2. Inbound traffic Using Multiple Connections to the Internet 74

4.3. Using Multiple Connections to the Internet for Inbound and Outbound Con-
1= 1 0] PSP 76
11. Scripts for Managing [Pciiiiiiii e 77
L ProxXy ARP SCIHPES ouuuiiiiciiie et e e 77
2 N B o T o) 80
2 I (010 o ==S oo 1] oo PP 87
1. Introduction to TroubleShoOtNGc.uuiviiiiiii e 87
2. Troubleshooting at the Ethernet Layerccooviiiiiiiiiii e, 87
3. Troubleshooting at the [P Layeruociiiiiiii e e e e 87
4. Handling and Diagnosing Routing Problemscccooviiiiiiiineee, 87
5. Identifying Problems with TCP SESSIONScccvuiiiiiiiiiiiccie e e e 87
6. DNS TroubleSh0OtiNGuuueiiieiii i e e e e e e e e et e eaneaees 87
1. AppPendices and REFEIENCEcovuiiiii e e e e e e e e et e et e e aanaaes 88
A. An Example Network and DEeSCriptioncouuiiiiiiiii i e e 92
1. Example Network Map and General NOtEScccvviiiiiiiiii e, 92
2. Example Network Addressing Chartsccuoveiiiiiiiiiiiieece e 94
B. Ethernet Layer TOOIS ... ccuuniiiiieii et e e e e e e e et e e e e aa e eeen 96
= T o PP PRPRPTPRN 96
22 o] 1 2T T 97
G T o N 1 P 98
3.1. Displaying link layer characteristics with ip link showc.coevevinne. 99
3.2. Changing link layer characteristicswith ip link setc.ccooiiiiiiiininns 99
3.3. Deactivating adevice with ip link Setcoocoiiiiiiiiii 100
3.4. Activating adevice with ip link Setcooooiiiiiiii e, 101
3.5. Using ip link set to changethe MTUcooooiiiiiiiiiii e, 102
3.6. Changing the device name with ip link setccoiiiiiiiiiii e, 102
3.7. Changing hardware or Ethernet broadcast address with ip link set 102
AP NEIGNDOT oo 103
T 1 4TI (oo RSP 106
C. P Address ManaQementooiiunieiiiieii e e e e e e e e e et e et e e et e e st e e et e eanaees 108
O o] o) o T 108
1.1. Displaying interface information with ifconfigccooeeiii i, 108
1.2. Bringing down an interface with ifconfigccoooviiiiiiiii i, 109
1.3. Bringing up an interface with ifconfigcoooieiiiiii 109
1.4. Reading ifconfig OULPULccouiiiiniiiii e 110
1.5. Changing MTU with ifconfigcooooiiiiiiiiin e, 110
1.6. Changing device flags with ifconfigccoociiiiiiiiin e, 111
1.7. General remarks about ifCoNfigccocevviiiiiiiiiiii 112
| o = o [[= N 112
2.1. Displaying interface information with ip address showc..c.. 112
2.2. Using ip address add to configure IP address information 113
2.3. Using ip address del to remove IP addresses from an interface................... 114

2.4. Removing al IP address information from an interface with ip addr ess

TUSN e e 115
2.5, CONCIUSION .ttt e e e et e et e e e e aa e 115
D. [P ROULE MaNAQEIMENL ...oviititiiititiet ettt et e e e e e eas 116

Guideto IP Layer Network
Administration with Linux

O o1 PP 116
1.1. Displaying the routing table with routeccoooiiiiiiiii e, 116

1.2. Reading rOULE'S OULPULuvvveieiiieeii e ee e e e e e e e e e e e e e e aaans 117

1.3. Using route to display the routing cacheccoccoeviiiiiiiin i, 118

1.4. Creating a static route with route addcccoeeiiiiiiiiiii e, 119

1.5. Creating a default route with route add defaultc..cooeiiiiiiin, 121

1.6. Removing routes with route delccooiiiiiiiiii i, 121

220 | o T o 1 | (= PP 123
2.1. Displaying arouting table with ip route Showcccooceiviiiiiiiinneinns 123

2.2. Displaying the routing cache with ip route show cache.................c.coece. 125

2.3. Using ip route add to populate arouting tableccooeeeiiiiiiiiieneennnn, 127

2.4. Adding a default route with ip route add defaultccooeeiiiiiniinnns 128

2.5. Setting up NAT withip routeadd natc.cooeveviiiiiiiiiii e, 128

2.6. Removing routes with ip route décooooiiii i 130

2.7. Altering existing routes with ip routechangeccoccceveviii i, 130

2.8. Programmatically fetching route information with ip route get 131

2.9. Clearing routing tables with ip route flushccoocoiiiiiiiii 131
210.ip routeflush cachecoooiiiiii i 132

2.11. Summary of the use Of iPp FOULEcvvviiiiic e 133

G T o N 1] = 133
L 0P TUIE SNOW et e 133

3.2. Displaying the RPDB with ip rul@ Showcccooeviiiiiiiiiiiii e, 133

3.3. Adding arule to the RPDB withipruleaddc.ccoiviiiiiiiiiniiiin e, 134

G T o U == o [o N 4 - | N 135

BE P TUIB Bl e 136

E. TUNNEIS @NO VPINS ... e e s 137
1. Lightweight encrypted tunnel with CIPEcccooiiiiiii e, 137
2. GRE tunnels with ip tUNNEl 137
3. All manner of tunNnElS With SShcoeuii i 137
4. IPSec implementation via FTEES/WANcooiiiiiiiiii e 137
5. IPSec implementation inthe Kernelcocooiiii i 137
T i I PP 137
F. Sockets; Servers and CHENESuuiiiiiiiiieiiii e et e e e eeeaa e e eene 138
TR = 1 = OSSP 138
2 £ o PP 138
o o | PP UPTTPT 139
R (v o Tox L= o | 140
LI (] 1= (o PSP 140
LI ex 0 Y= PP 141
8 = o L1 P 141
LT B T-"o a0 1S 1T o3l 1o o) = 143
O o1 o P 143
1.1. Using ping to test reachabilitycccooeiiiiiiiiii e, 144

1.2. Using ping t0 Stress a NEWOIKcovveeiiiieiiiieiii e 146

1.3. Recording a network route With pingcoooeiiiiiiiiin e, 146

1.4. Setting the TTL on aping Packetcccuviviiiiiiiiieiiiiecie e 147

1.5. Setting ToS for a diagnoStiC PiNg «....evvvneiiiiiiii e e 148

1.6. Specifying a source address for PiNgc.ovveviiieiiiieiiii e 148

1.7. Summary on the USE Of PINGuvviviiiiiii e 149

A - 1o o U PP PTPRPR 149
2 I U T o I Vo= o | = 149

2.2. Telling tracer oute to use ICMP echo request instead of UDP..................... 150

2.3. Setting TOS With traCerouteoevviiiiiiiei e, 150

2.4. Summary on the use of traceroUtec.oeveiviieiiii e, 150

Vi

Guideto IP Layer Network
Administration with Linux

T 1 1 1 PP UPTPPRPR 150
R 01 = | PP UP TP 151
4.1. Displaying socket status with NetStatccceevveiiiiiiiiiieieei e 151

4.2. Displaying the main routing table with netstatccooeeiiiiiineinn, 154

4.3. Displaying network interface statistics with netstat command 154

4.4. Displaying network stack statistics with netstatcccoeevviviiiiniiinnnnnnnn. 155

4.5. Displaying the masquerading table with netstatccoooeeeiiiiiiieiinennn. 155

LI oo o U3 o o TS 155
5.1. Using tcpdump to View ARP MESSAJESuucvvvneiiieiiiieeeiieeeieeeiieeeeaeeeens 155

5.2. Using tcpdump to see ICMP unreachable messagesccooevvvvevinneennnn. 156

5.3. Using tcpdump to watch TCP SESSIONScvvvieiiiieiiii e e 157

5.4. Reading and writing tcpdump datacccvieeiiiiiiiiieci e, 157

5.5. Understanding fragmentation as reported by tcpdumpcoocoiveiiieinn 158

5.6. Other options to the tcpdump commandccocoeviiiiiiin i, 158

B. LCPT IO e 158
8 o 1= o] - PPN 158
L TR T o= | Y/ 159
1. ipcalc and other 1P addressing calCulatorsccccuvveviieiii i, 159
2. Some general remarks about iproute2 t00IScevvvieiiiieiiiie e 159
3. Brief introduction t0 SYSCE ...cvviiiiiici e 160
[. LinkS tO OtNEr RESOUICESiiiiiiiei ettt e e e e et e e et eeeae s 161
1. Links tO DOCUMENEALION .. .evvvtiieeiiiieee et e et e et e et e et e e e e et e e e eeneaeeees 161
1.1. Linux Networking Introduction and Overview Materidc.eeeen.. 161

1.2. Linux Security and NetwOork SECUNLYoovvviieiiieiiiieiie e 161

1.3. General |P Networking RESOUICESoevvviiiiiieii e 161

1.4. Masquerading tOPICSucvuuiiii e e e e r e 162

1.5. Network Address Translationcoceuivieiiiiiiiiiii e 162

1.6. Iprout€2 doCUMENEALIONccvuieiii e e e e e e e e e e e e eenas 163

1.7, NEtfIlter RESOUICESvviieiiii ettt e e e et e e et e eeens 163

1.8. IPChAINS RESOUICESivviicii e e e e 163

1.9, IpfWadm RESOUICEScvuiiiiieiiiieeiiee e e e e e e e e e e e e e et e e e e aaeees 164

1.10. General Systems REFEIENCESccvuiiiiieiiiciii e e 164

00 T = T o Vo 164

122, Traffic CONIOl oovvneeeii e e 164

123, IPVA MUITICESE covveeeieiee et 165

1.14. Miscellaneous Linux [P RESOUICESccvvvviiieiiiiieeeiii e et 165

2. LINKS 10 SOfWEIE .. eieiiiee e e e e e e e e aee 166
2.1 BaSIC ULHTIES coevuieeiii e 166

2.2. Virtual Private Networking SOftwareccooceviiiiiniiiiincciecc e, 166

2.3. Traffic Control queueing disciplines and command linetools..................... 167

2.4. Interfaces to lower layer t00ISc.uuviiiiiiiii e 167

2.5. Packet sniffing and diagnostic to0lScccuvieiiiiiiiiiiii e, 167

J. GNU Free Documentation LICENSEcccuuuiiiiiii e e e e e eees 169
L PREAMBLE ...t 169
2. APPLICABILITY AND DEFINITIONSooviiiiiiiiieteiii e e 169
3. VERBATIM COPYING ...ootiiiiiiiiiieiiiis ettt e e e e e e e eaanns 170
4. COPYING IN QUANTITY ittt ettt n et e e 170
5. MODIFICATIONS ...ouiiiiiii ettt e et e et e e e eaanns 171
6. COMBINING DOCUMENTSouiiiiiiiiieeii ettt e 172
7. COLLECTIONS OF DOCUMENTS ...ttt s e e s 173
8. AGGREGATION WITH INDEPENDENT WORKScoiiiiiiieiiiiiieecciiieeeciie 173
9. TRANSLATION L.ttt ettt e et e et e e et e e e e e e e aae s 173
10. TERMINATION L.ouiiiiiiiei it e et e et e e e e e 173
11. FUTURE REVISIONS OF THISLICENSEoiiiiiiiieeiin e 174

Vii

Guideto IP Layer Network
Administration with Linux

12. ADDENDUM: How to use this License for your documents.............ccoeeevvneeennnnns

Reference Bibliography and Recommended Reading

INAEX e e

viii

List of Tables

2.1. Active ARP CaChe eNtry SEALESuuuiiiiii ettt 18
4.1. Keys used for hash table lookups during route Selectionccccoviiiiiiiiiiiiiinee e, 35
5.1. Filtering an iproute2 NAT packet with ipchains ..o, 52
A.1. Example Network; Network AdOreSSiNgccoeveieeiirieeieie et 94
A.2. Example Network; HOSt AQOreSSINGcevuniiiiiiiieieii et 94
B.1. ip link 1INk layer deviCe SLALESuiiieiei e 100
B.2. Ethernet Port Speed ADDIeVIalioNSuuiiiiiiiieiii et 106
C.L INETACE FIAOS ..oevve e et 111
C.2. IP SCOpe UNAEr i A0ANESScieiiieeiiii ettt ettt e e et e e e et e e eene e aees 113
G.1. Possible Session States in NELStAl OULPULuueieiiieieiie e 153
H.L. IPIrOULEZ SYNONYIMIS «.vuieiiiiie ettt ettt e et e et et e e et bt e et et e e e e b e e e erea s 160

List of Examples

1.1, Sample ifCONTIG OULPUL ettt e e e e e s 5
1.2. Testing reachability of alocally connected host With Pingoveviiiiiiiiiiiiii s 7
1.3. Testing reachability of NON-10CAl NOSESuiiiiii e 8
1.4. Sample routing table With & StaliC FOULEuiiiiiiiii e 9
1.5. ifconfig and route output before the Change ... 10
1.6. Bringing down a network interface with ifCONfigoooviiiiiiiiiii 10
1.7. Bringing up an Ethernet interface With ifCONfigoviiiiiiiiii e 11
1.8. Adding a default route With FOULEoiiiiiiii e 12
1.9. Adding a Static route WIith FOULEooiiieiieiii e 12
1.10. Removing a static network route and adding a static host routecoveveviiieiiiineeieiinne, 13
2.1. ARP conversation captured With tCPAUMPuiiiiiiieiiii e 16
2.2. Gratuitous ARP reDlY fraMES ...t 17
2.3. Unsolicited ARP reqUESE FraMESccuuuiiiiii et 17
2.4. Duplicate Address Detection With ARPiiiiiii e 17
2.5. ARP cache listings with arp and ip Neighbor ..., 18
2.6. ARP CaCNE TIMEOULuuiiiiit et e et e et e e e et e e e enaaeaees 19
2.7, ARP FIUX ettt ettt e e e et et e eaaeeaaaaa 20
2.8. Correction of ARP flux withconf / $DEV/ arp_filter ..o 21
2.9. Correction of ARP flux with net / $DEV/ hi dden ..o 23
2.10. Proxy ARP NetWOrK DI@Qramcccuuuueiiiiiieieiie et ettt e e e e e enees 24
2.11. Bringing UP @ VLAN INEITACEuuuiiiiiiiee e e 25
2.12. Link aggregation DONAINGoceeutueiiiie ettt e 26
2.13. High availability DONAINGoieiiiieiii e 27
4.1, ClasseS Of [P 8OAIESSESvunieiiiiie ettt ettt e ettt e et et e e e ena e aeens 30
4.2. Using ipcalc to display I[P informationuiiiiiiiiiiiiii e 31
4.3. ldentifying the locally connected networks With routecoooeveviiiiiiiiin i, 32
4.4. Routing Selection Algorithm in PSEUAO-COUEooiiiuiiiiiiii e 35
4.5. Listing the Routing Policy Database (RPDB)iiiiiiiiiiiiiiieeeei e 36
4.6. Typical content of /et c/i proute2/rt_tabl esccoooiiiiiiiiiii 39
A.7. UNICASE FOULE TYPESneeeeti ettt ettt ettt ettt e et e e e et e e et et e e ettt e e e e et e e e eeba s 40
4.8. DrOBACASE FOULE TYPES ... eeett ettt ettt ettt ettt ettt ettt e et e et et e e e e na e eenans 40
4.9. 10CEI TOULE TYPES ..ottt ettt e et e e et e e et et e e e e et e e e e eba s 41
4.00. NAE TOULE TYPES ..eteeeieiet ettt ettt ettt et et et e et e e et r et et e e e e e et e e e ena s 41
4.17. UNreaChabl@ TOULE TYPES ...ovvui ittt ettt ettt e e ettt e e et e e e e et e e eeabn e eeees 41
4.12. ProhibDIt FOULE TYPES ...ttt ettt e et e et e e et eeeena s 41
4.13. DIaCKNOIE FOULE TYPES ... ettt ettt e e e et e e nb s 41
A.14. ThIrOW FOULE TYPESeeeeii ettt ettt ettt et e et e e et et e e et et e e et et e e e e eba s 42
4.15. Kernel maintenance of thel ocal routing tablecooiiiiiiiiiiii e, 42
A.16. UNICASE TUIE LY ..ttt ettt e et e e e e e e e e ra s 44
.17, NBE TUIE BY P ettt ettt ettt et ettt e s 44
4.18. UNreaChabl@ FUIE TYPE ...t ettt e e e et eeenans 44
4.19. ProhibDIT FUIE TYPE ...ttt 44
4.20. DIaCKNOIE FUIE TYPE ...ttt ettt e e ettt e e e et e e e era e eeens 45
4.21. ICMP RedireCt 0N the WITEcooiiiiiiii e e 46
5.1. Stateless NAT PaCket CaplUreuueiiiiiieiiiii et 50
5.2. Basic commands to create a StAEl@SS NAT ...oovuiiiiiiiiiieii e 51
5.3. Conditional Stateless NAT (not performing NAT for a specified destination network) 52
5.4. Using an ipchains packet filter with statel eSS NAToeniiiiiiiie e 53
5.5. Using DNAT for all protocols (and ports) 0n 0NE 1Pc.uuiiiiiiiiiieiiiii e 54
5.6. USiNg DNAT fOr @ SiNGIE POITiiiiiiieieiii ettt e e s 54
5.7. Simulating full NAT with SNAT and DNAT ...oouiiiiii e 55

Guideto IP Layer Network
Administration with Linux

7.1. Blocking a destination and using the REJECT target, cf. Example D.17, “Adding apr ohi b-

i1 route WIith FOULE @0d”iiiii e e e et e et e e e et e e e eatnnaeees 61
10.1. Multiple Outbound Internet links, part I; ip FOULEcevuiiiiiii e 72
10.2. Multiple Outbound Internet links, part I1; iptablesccoooiiiiiiiiii e, 73
10.3. Multiple Outbound Internet links, part [11; ip rUlecooveeiii e 74
10.4. Multiple Internet links, inbound traffic; using iproute2 onlycooeveiiiiiiieeiii e, 76
11.1. Proxy ARP SysV initialiZzation SCIPEuieiiiieiiieiii e e e e 77
11.2. Proxy ARP configuration fil@ccouuiiiiiiii e 78
11.3. Static NAT SysV initialization SCIPEccvuiiiiiieiiicii e e e e e 80
11.4. Static NAT configuration fileocouuiiiiiiii e 83
B.1. Displaying the arp table With @rpcoovviiiiiii e 96
B.2. Adding arp table entrieS With @rpcccouuiiiiiii e 97
B.3. Deleting arp table entrieS With @rpccoovniiiiii e 97
B.4. Displaying reachability of an IP on the local Ethernet with arpingc..ccooeeiiiiiiin i, 98
B.5. Duplicate Address Detection With arpingcccoueiiiiiiiiiie e 98
B.6. USING IP HINK SNOW <.ouuiiiiiii e e e e e et e e et e eeaa s 99
B.7. Using ip link set to change device flagscocvuuiiiiiiiiii e 99
B.8. Deactivating alink layer device with ip link Satoooiiiiiiiiii e, 100
B.9. Activating a link layer device with ip linK SBtooiiiiiiii e 101
B.10. Using ip link set to change device flagscocoviiiii i 102
B.11. Changing the device name with ip linK Sat ..o, 102
B.12. Changing broadcast and hardware addresses with ip link Setcccocoiviiiiiiinn, 103
B.13. Displaying the ARP cache with ip neighbor Showcooiiiiiiiiiii e 103
B.14. Displaying the ARP cache on an interface with ip neighbor showcc.ccoiviiei, 104
B.15. Displaying the ARP cache for a particular network with ip neighbor show 104
B.16. Entering a permanent entry into the ARP cache with ip neighbor addc. 104
B.17. Entering a proxy ARP entry with ip neighbor add proxycccccoeveiiiiiiin i, 105
B.18. Altering an entry in the ARP cache with ip neighbor changeccooviiiiii 105
B.19. Removing an entry from the ARP cache with ip neighbor delccoooiiiiin. 105
B.20. Removing learned entries from the ARP cache with ip neighbor flushll. 105
B.21. Detecting link layer status with mii-toolcoooiiiiiiii e, 106
B.22. Specifying Ethernet port speeds with mii-tool --advertisecccoeeviiiiiieiiii e, 107
B.23. Forcing Ethernet port speed with mii-tool --forcecoooviiiiiiiiii e 107
C.1. Viewing interface information with ifconfigccooiiiii i 108
C.2. Bringing down an interface With ifConfigccooiiiiii i 109
C.3. Bringing up an interface With ifConfigccoiiiiiiiii 109
C.4. Changing MTU With ifCONTIQovuiiiiiii e 110
C.5. Setting interface flags With ifCONTIQoviviii e 111
C.6. Displaying IP information With ip addressoovviiiiiie e 112
C.7. Adding IP addresses to an interface with ip addresscovviiii i 113
C.8. Removing IP addresses from interfaces with ip addresscccccccoiiiiiiiin i, 114
C.9. Removing al IPs on an interface with ip address flushcccoociiiiiiii 115
D.1. Viewing asimple routing table With rOUtecciiiiii i, 116
D.2. Viewing a complex routing table With roUteooiiiiiiiiii e 117
D.3. Viewing the routing cache With FOULEcc.iiiiiiii e 118
D.4. Adding a static route to a network route addoeeviiiiiiiiiii e 119
D.5. Adding a static route to ahost with route addc.coeeviiiiiiiiii e, 120
D.6. Adding a static route to a host on the same mediawithrouteaddcccocoviiiiiniinn, 120
D.7. Setting the default route With TOULEcoiiiiiii e 121
D.8. An dternate method of setting the default route with routec..ccoeviiiiiiiii i, 121
D.9. Removing a static host route with route delcooiiiiiiiiii e, 122
D.10. Removing the default route with route delcooeiiiiiiiii e 122
D.11. Viewing the main routing table with ip route ShOwccooviiiiiiiiii i, 123
D.12. Viewing the local routing table with ip route show tablelocalccooeviiviiineinne, 124

Xi

Guideto IP Layer Network
Administration with Linux

D.13. Viewing arouting table with ip route show tableccoiii i 125
D.14. Displaying the routing cache with ip route show cacheccoocviiiiiiieiii i, 126
D.15. Displaying statistics from the routing cache with ip -sroute show cache........................... 126
D.16. Adding a static route to a network with route add, cf. Example D.4, “ Adding a static route

t0 @ NELWOTK FOULE A" ...vei e e e e et e e e et e e e e e 127
D.17. Adding apr ohi bi t routewithrouteaddcooeiiiiiiiii i, 127
D.18. Using f r omin arouting command with route addccooeeiiiiiiii i 127
D.19. Using sr ¢ in arouting command with route addcccoiieiiiiiiiiiin e, 128
D.20. Setting the default route with ip route add defaultcooeeeiiiiiiii e 128
D.21. Creating a NAT route for asingle IPwithip routeadd natccooeeeiiiiiiiiiinccinee, 129
D.22. Creating a NAT route for an entire network with ip routeadd natccooceeievineennnn.. 129
D.23. Removing routes With ip rout@ Aloiiiiiii e 130
D.24. Altering existing routes with ip route Changecoevviiiiiiiii e 130
D.25. Testing routing tables With ip FOULE GELvuiiii i 131
D.26. Removing a specific route and emptying arouting table withip routeflush 131
D.27. Emptying the routing cache with ip route flush cacheccoooiii i 132
D.28. Displaying the RPDB With ip rul@ SHOWccuviiiiiiiiii e 133
D.29. Creating asimple entry in the RPDB withipruleaddc.ocoiiiii i, 134
D.30. Creating a complex entry in the RPDB withipruleaddccooooiiiiiiiiiiii e, 135
D.31. Creating a NAT rule withip ruleadd natcooeiiiiiiii e, 135
D.32. Creating a NAT rule for an entire network with ip ruleadd natcccoooeiiiiiiiiinennnnn, 135
D.33. Removing a NAT rule for an entire network withip ruledel natco.cooieiiin, 136
L S 4970 TSN U1) o o 138
F.2. Specifying timeOUL WIth NC ... e e 138
F.3. Specifying source address With NCovviiiiiii e 138
FLA. USING NC 8S @ SEIVET ..iuuiiiiiieiiii i e et e ettt et e e e et e e e e e et r e et e e et e eeta s e st e etn s eeannaeannaees 139
F.5. Delaying a Stream With NCiiiiiiii e e e 139
F.6. USING NC WIth UDP .. .eniiiiii e e e e e e e e e e e e e e aanaees 139
F.7. SIMPIE USE Of SOCAL ...evuiiiiiiii et e e e e e e e e e e e e et e e et eeaan e eaanaes 139
F.8. Using socat With ProXy COMNECLccuuiiiiiiiiiii e e e e e e e eaa s 139
F.9. USING SOCAE PEITOMM SSL ..uuiiiiiiii i et e e e e e e e e e e et e e et e e e e e eees 139
F.10. Connecting one end of socat to afile desCriptorc..ovevviiiiiii i 139
F.11. Connecting socat t0 @ Sarial [Nccuuiiiiiiiie e 140
F.12. USINg @ PTY WIth SOCALcivviiiiiicii i e e e e e e e 140
F.13. Executing @ command With SOCALcouuieiiiiiiiiie e e e 140
F.14. Connecting one socat t0 another ONEcooiiiiiii e 140
F.15. Simple Use Of tCPCHENTiii e e e e e e e eanaees 140
F.16. Specifying the local port which tcpclient should requestccoceviiiiieiiieeie e, 140
F.17. Specifying the local IP to which tcpclient should bind ..o 140
F.18. IP redirection With XINELAccouuiiiiiiiiiie e 140
F.19. Publishing a service With XINEtc.couiiiiiiiii e e e 141
F.20. SIMPIE USE Of 10PSEI VAl ouiiiiii it e e e e et e e e e e eaes 141
F.21. Specifying @ CDB fOr tCPSEI VAN ...uuiiiiiciiii e e e e e e e e et e e e e eanees 141
F.22. Limiting the number of concurrently accept TCP sessions under tCPSErVErcovevvvnevennnnns 141
F.23. Specifying a UID for tcpserver's Spawned PrOCESSESuvvrneirineeeieeeiiieereeetieeaieeenneeeens 141
F.24. Redirecting @ TCP port With redircooiiiii i 141
F.25. Running redir in transparent MOEoovuuiiiiiiii e e e e e e 141
F.26. Running redir from another TCP SEIVErcouuiiiiiiiiii e 141
F.27. Specifying a source address for redir's client Sideooovveiiiiiiiii e, 142
G.1. Using ping to test reachabilitycouiiiiiiiiiii e 144
G.2. Using ping to specify number of packetsto sendooevviiiiiiciii e, 145
G.3. Using ping to specify number of packetsto Sendc.ooevviiiiiii i, 145
G.4. USINg PIiNG t0 StrESS @ NEIWOTK ...vuuiiiieiiii e e e e e e e e e aens 146
G.5. Using ping to stress a network with large packetsoocvvviiiiiiiiii e, 146

Xii

Guideto IP Layer Network
Administration with Linux

G.6. Recording a network route With Pingooiiiiiii i 147
G.7. Setting the TTL 0N @ PiNg PACKELuuiiiiiiii e e e e e e aens 147
G.8. Setting ToS for a diagnOStiC PING ...cvvvniieiieiiiie e e e e e et e e ee 148
G.9. Specifying a source addreSs fOr PINGcevuciii i e e e aen 149
G.10. SIMpPle USAJE Of traCEI OULEiieicii e e e e e e e e e e eaans 150
G.11. Displaying IP socket status With NELSLAtccvuiiiiiiiiii e 151
G.12. Displaying IP socket status details with Netstatccccviiiiiiiiii i, 153
G.13. Displaying the main routing table with netstatcccooeviiiiiiiiin e, 154
G.14. Displaying the routing cache With NEtStatccoiviiiiiiiiii e 154
G.15. Displaying the masguerading table with netstatcccooeviiiiii i 155
G.16. Viewing an ARP broadcast request and reply with tcpdumpc.ccooviiiiiiiiiiieeen, 155
G.17. Viewing a gratuitous ARP packet with tepdumpccoiiiiiiiiiii e 156
G.18. Viewing unicast ARP packets With tCpAdUMPcooviiiiiiiiii e 156
G.19. tcpdump reporting port UNreachablecvviiiiiiic e 156
G.20. tcpdump reporting host unreachable ..., 156
G.21. tcpdump reporting net unreachablecvvniii i 156
G.22. Monitoring TCP window sizes With tCpdumMPviiiiiiiii e, 157
G.23. Examining TCP flags with tcpdumpoiiiii e 157
G.24. Examining TCP acknowledgement numbers with tcpdumpccoooviiiiiiiciniie 157
G.25. Writing tecpdump datato afileoovvniiiii i 157
G.26. Reading tcpdump data from afile ... 157
G.27. Causing tcpdump to use aline bUFferooovniiii i 158
G.28. Understanding fragmentation as reported by tCpdumpoveviiiiiiiiii e 158
G.29. Specifying interface With tCPAUMPoiivi i 158
G.30. Timestamp related options tO tCPAUMP ..uviiiin i e 158

Xiii

Introduction

Thisguide is as an overview of the IP networking capabilities of linux kernels 2.2 and 2.4. The target
audienceis any beginning to advanced network administrator who wants practical examples and expla-
nation of rumoured features of linux. Asthe Internet islousy with documentation on the nooks and cran-
nies of linux networking support, | have tried to provide links to existing documentation on | P network-
ing with linux.

The documentation you'll find here covers kernels 2.2 and 2.4, although a good number of the examples
and concepts may also apply to older kernels. In the event that | cover afeature that is only present or
supported under a particular kernel, I'll identify which kernel supports that feature.

1. Target Audience, Assumptions, and Recom-
mendations

| assume afew things about the reader. First, the reader has a basic understanding (at least) of IP ad-
dressing and networking. If thisis not the case, or the reader has some trouble following my network-
ing examples, | have provided a section of linksto IP layer tutorials and general introductory documen-
tation in the appendix. Second, | assume the reader is comfortable with command line tools and the Lin-
ux, Unix, or BSD environments. Finally, | assume the reader has working network cards and a Linux
OS. For assistance with Ethernet cards, the there exists a good Ethernet HOWTO [http://www.tldp.org/
HOWTO/Ethernet-HOWTO.html].

The examples | give are intended as tutorial examples only. The user should understand and accept the
ramifications of using these examples on his’her own machines. | recommend that before running any
example on a production machine, the user test in a controlled environment. | accept no responsibility
for damage, misconfiguration or loss of any kind as a result of referring to this documentation. Proceed
with caution at your own risk.

This guide has been written primarily as a companion reference to 1P networking on Ethernets. Although
| do allude to other link layer types occasionaly in this book, the focus has been IP as used in Ethernet.
Ethernet is one of the most common networking devices supported under linux, and is practically ubig-
uitous.

2. Conventions

This text was written in DocBook [http://www.docbook.org/] with vim [http://vim.sourceforge.net/].
All formatting has been applied by xsltproc [http://xmlsoft.org/XSLT/] based on DocBook [http://
dochook.sourceforge.net/projects/xsl/] and LDP XSL stylesheets [http://www.tldp.org/LDP/LDP-Au-
thor-Guide/usingldpxsl.html]. Typeface formatting and display conventions are similar to most printed
and electronically distributed technical documentation. A brief summary of these conventions follows
below.

The interactive shell prompt will look like
[root @nhost nane] #

for the root user and

[user @ost nane] $

for non-root users, although most of the operations we will be discussing will require root privileges.

Xiv

http://www.tldp.org/HOWTO/Ethernet-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-HOWTO.html
http://www.docbook.org/
http://www.docbook.org/
http://vim.sourceforge.net/
http://vim.sourceforge.net/
http://xmlsoft.org/XSLT/
http://xmlsoft.org/XSLT/
http://docbook.sourceforge.net/projects/xsl/
http://docbook.sourceforge.net/projects/xsl/
http://docbook.sourceforge.net/projects/xsl/
http://www.tldp.org/LDP/LDP-Author-Guide/usingldpxsl.html
http://www.tldp.org/LDP/LDP-Author-Guide/usingldpxsl.html
http://www.tldp.org/LDP/LDP-Author-Guide/usingldpxsl.html

Introduction

Any commands to be entered by the user will always appear like

{ echo "Hi, | amexiting with a non-zero exit code."; exit 1}
Output by any program will look something like this:

H, I amexiting with a non-zero exit code.

Where possible, an additional convention | have used is the suppression of all hosthame lookup. DNS
and other naming based schemes often confuse the novice and expert alike, particularly when the name
resolver is slow or unreachable. Since the focus of thisguideis IP layer networking, DNS names will be
used only where absolutely unambiguous.

3. Bugs and Roadmap

Perhaps this should be called things that are wrong with this document, or things which should be im-
proved. Seethe sr ¢/ ROADVAP for notes on what is likely to be forthcoming in subsequent releases.

Theinterna document linking, while good, but could be better. Especially lameisthe lack of an index.
External links should be used more commonly where appropriate instead of sending usersto the links
page.

If you arelooking for LARTC topics, you may find some LAR topics here, but you should try the
LARTC page [http://lartc.org/] itself if you have questions that are more TC than LAR. Consult Appen-
dix I, Linksto other Resources for further references to available documentation.

4. Technical Note and Summary of Approach

There are many tools available under linux which are also available under other unix-like operating sys-
tems, but there are additional tools and specific tools which are available only to users of linux. This
guide represents an effort to identify some of these tools. The most concrete example of the difference
between linux only tools and generally available unix-like toolsis the difference between the traditional
ifconfig and r oute commands, available under most variants of unix, and the iproute2 command suite,
written specificialy for linux.

Because this guide concerns itself with the features, strengths, and peculiarities of |P networking with
linux, the iproute2 command suite assumes a prominent role. The iproute2 tools expose the strength,
flexibility and potential of the linux networking stack.

Many of the tools introduced and concepts introduced are also detailed in other HOWTOs and guides
available at The Linux Documentation Project [http://www.tldp.org/] in addition to many other places
on the Internet and in printed books.

5. Acknowledgements and Request for Re-
marks

As with many human endeavours, thiswork is made possible by the efforts of others. For me, this effort
represents almost four years of learning and network administration. The knowledge collected here is
in large measure a repackaging of disparate resources and my own experiences over time. Without the
greater linux community, | would not be able to provide this resource.

| would like to take this opportunity to make a plug for my employer, SecurePipe, Inc. [http:/
www.securepipe.com/] which has provided me stable and challenging employment for these (almost)

XV

http://lartc.org/
http://lartc.org/
http://www.tldp.org/
http://www.tldp.org/
http://www.securepipe.com/
http://www.securepipe.com/
http://www.securepipe.com/

Introduction

four years. SecurePipe is a managed security services provider specializing in managed firewall, VPN,
and IDS services to small and medium sized companies. They offer me the opportunity to hone my net-
working skills and explore areas of linux networking unknown to me. Thanks also to SecurePipe, Inc.
for hosting this cost-free on their servers.

Over the course of the project, many people have contributed suggestions, modifications, corrections
and additions. I'll acknowledge them briefly here. For full acknowledgements, see sr ¢/ ACKNOWL-
EDGEMENTS in the DocBook source tree.

* Russ Herrold, 2002-09-22
 Yann Hirou, 2002-09-26

* Julian Anastasov, 2002-10-29
» Bert Hubert, 2002-11-14

e Tony Kapela, 2002-11-30

» George Georgalis, 2003-01-11
» Alex Russdl, 2003-02-02
 giovanni, 2003-02-06

¢ Gilles Douillet, 2003-02-28

Please feel free to point out any irregularities, factual errors, typographical errors, or logical gapsin
this documentation. If you have rants or raves about this documentation, please mail me directly at
<mabr own@ecur epi pe. conp.

Now, let's begin! Let me welcome you to the pleasure and reliability of IP networking with linux.

XVi

Part |. Concepts

Table of Contents

1. BASIC 1P CONNECHIVITY ...ueeeitieeieti ettt ettt e e et e et e e e e et e e e e eaa s 4
1. 1P Networking Control FIlEScouuuiiiiiiii i 4
2. Reading Routes and 1P INfOrmMationc..uiiiiiiiiieiii e 5

2.1. Sending Packets to the Local NEtWOIKccovuuiiiiiiiiiiieiiiieecc e 7
2.2. Sending Packets to Unknown Networks Through the Default Gateway 8
2.3. Static ROULES 10 NEIWOIKSceeiiiieiiiii e 9
3. Changing IP Addresses and ROULESccouuuuiiiiiiiieeiiie ettt 9
3.1. Changing the IP on amachingooovviiiiiiiiii e 10
3.2. Setting the Default ROULEuiiiiiiieie e 11
3.3. Adding and removing & StaliC MOULEuuuivieuineieiiii et 12
A, CONCIUSION ..ottt e et e e et e e e b 13
2. B NEINEL .. e 15
1. Address Resolution ProtoCol (ARP)cooviiiiiiiii e 15
1.1. Overview of Address Resolution Protocolcovcieuviiieiiiiiniiiiieeeii e 15
1.2. THE ARP CBCNE ..coeeieeiii e 18
1.3 ARP SUPPIESSION ...uiiiiiiiiee ettt ettt e et e et e e et eeeeb s 20
1.4. The ARP FIUX Problemiiiiii e 20
2. PIOXY ARP o 23
3L ARP FIEEIING et 24
4. Connecting to an Ethernet 802.10 VLAN ...o.uiiiiiiii e 25
5. Link Aggregation and High Availability with Bondingccccoovieiiiiiiiiiiiie, 25
5.1, LinK AQOrEOATIONiiieiiieeeiii ettt et e 26
5.2. High AVaIlabilityooeeeiiiiii e 27

S BIIAGING et et 28
1. CoNCEPLS OF BIIAGINGeeeeeieeietiie ettt et e e 28
2. Bridging and Spanning Tree ProtOCOIcoouuuuiiiiiiiieiiiii e 28
3. Bridging and Packet FIlterinNgccouuuiiiiiiiieiiie e 28
4. Traffic Control With @ BIiAgEcciieiiieiii e 28
B BTADIES ...t e 28

A TP ROULING . eetteeeiti ettt ettt oottt e ettt e e et et e e et et e e et et e e e e e ben e e e eete e e eenbaaeeee 29
1. Introduction tO LiNUX ROULINGuiiieiiiiiii et 29
2. Routing to Locally Connected NEIWOIKSc..uueiiiiiiiiiiiii e 31
3. Sending Packets Through & GaLEWEYoeeeuruiiiiiiiie e 32
4. OPerating aS 8 ROULEScouuiiiiiiiie ettt ettt e e eeeeas 33
5. ROULE SEIECHION ...ttt ettt e e et e e e s 33

5.1. The COMIMON CBSE ...t eiiiii ettt ettt ettt e e e e e e eneas 34
5.2. The WHOIE SEOIY ...ttt et e e e 34
5.3 SUMIMEIY .ottt ettt ettt e e e e enas 36
6. SOUrCE AdAresS SEIECHIONcevuuiiiiii e ettt e e e e e eeees 36
7. ROULING CACNE ...t 37
8. ROULING TADIES ...ttt e e e e e eaaens 38
8.1. Routing Table ENtrieS (ROULES)cccevuniiiiiiieieeii ettt 40
8.2. The Local ROULING TaI@ ... e 42
8.3. The Main ROULING TaDI@cooueiiiiiii e 43
9. Routing Policy Datalase (RPDB)uiiiiiiiiiiiiii ettt 43
10. ICMP @N0 ROULING ...ttt ettt et e et e e et eeeaa s 45
10.1. MTU, MSS, aNd ICMP ...t e 45
10.2. ICMP Redirects and ROULINGocveereneiiiiiieieii et 45

5. Network Address Translation (NAT) ... e e 47
1. Rationale for and Introduction 10 NAT ... 47
2. Application Layer Protocols with Embedded Network Informationccoooveveiinieees 49

Concepts

3. Stateless NAT With IPrOULEZccvniiiiei e e eaeas 49
3.1. Stateless NAT Packet Capture and Introductionc.cccoveviiieiiineiiiie e 50

3.2. Stateless NAT PraCtiCUMcoovuniiiiiiiieeccie e e et e e s 51

3.3. Conditional StAElESS NATiiieiiiei e e e eaaans 51

4, Stateless NAT and Packet FItEriNgooovviiiiiii e 52
5. Destination NAT with netfilter (DNAT) .uuciiiiii e e 54
5.1. Port Address Translation With DNAT ...cooeuiiiiiiie e 55

6. Port Address Trandation (PAT) from USErSPacecceuuviiiiiiiiieiin e 55
7. Transparent PAT from USEISPDACEuvvuiiiieieiieiiee e e ee e e e e e e e et e et e e e eaaeenns 55
6. Masquerading and Source Network Address Translationc.oeveviieeiiiieiiin e, 56
1. ConCEPLS Of SOUICE NA T .o e e e e e e e e anas 56
1.1. Differences Between SNAT and Masqueradingcocevveviiiieiiineiiiieeineeeieeenn, 56

1.2. Double SNAT/MaSQUEradINGccvuneiiiieiiee e e e e e e e e e e eaa e eeen 56

2. Issues with SNAT/Masquerading and Inbound Trafficcocovieiiiiiiiiii e 56
3. Where Masquerading and SNAT Breakc...voiiiiiiiiiiiiii e e e e e 56
A = G A = = o 57
1. Rationale for and Introduction to Packet FIIteringccooooiiiiiiiiiii e 57
1.1. History of Linux Packet Filter SUPPOItcccuniiiiiiiiie e 58

2. Limits and Weaknesses of Packet FIlteringcccovviiiiiiiiiiiie e 58
2.1. Limits of the Usefulness of Packet FIteringcccooeviieiiiiiii e, 58

2.2. Weaknesses of Packet Filteringooovviiiiiiiiii e 59

2.3. Complex Network Layer Stateless Packet Filtersoococoveiiiiiiiiiin e, 59

3. General Packet Filter REQUITEMENTSiiiiiieii e ce e e e e e e e e e e e eaae e 60
4. The Netfilter ArChitECIUIEuuiiiii e e e 60
4.1. Packet Filtering with iptablescoooiiiiiii e 60

5. Packet Filtering With ipChainscooi i, 60
5.1. Packet Mangling with ipChainsccoiiiiii i 61

6. ProteCting @ HOSEoovniiiii e e 61
7. ProteCting @ NEIWOTKccuuiiiiiii e e e e e e e e e e e et e e e et eeaan e eaane s 61
8. FUMNEr RESOUICESiiiiiiii et e e e et e e et 61
8. StatefulNESS aNd SEALEIESSNESS .. .ceevvi i et e e et e e e e e e et e eaaae 63
PP 63
2. Statelessness Of [P ROULINGcvvniiiiieiii e e e e e e e e e e e et e e e e ean s 63
3. Netfilter ConNECtioN TraCKiNngcvvvuieiiieiii e e e e e e aaaes 63
35 TSP 63
35T 63

Chapter 1. Basic IP Connectivity

Internet Protocol (1P) networking is now among the most common networking technologies in use to-
day. The IP stack under linux is mature, robust and reliable. This chapter covers the basics of configur-
ing alinux machine or multiple linux machines to join an | P network.

This chapter covers a quick overview of the locations of the networking control files on different distri-
butions of linux. The remainder of the chapter is devoted to outlining the basics of P networking with
linux.

These basics are written in amore tutorial style than the remainder of the first part of the book. Reading
and understanding | P addressing and routing information is a key skill to master when beginning with
linux. Naturally, the next step isto alter the IP configuration of a machine. This chapter will introduce
these two key skillsin atutorial style. Subsequent chapters will engage specific subtopics of linux net-
working in amore thorough and less tutorial manner.

Networking Control Files

Different linux distribution vendors put their networking configuration filesin different placesin the
filesystem. Hereis a brief summary of the locations of the |P networking configuration information un-
der afew common linux distributions along with links to further documentation.

L ocation of networking configuration files
» RedHat (and Mandrake)

« Interface definitions/ et ¢/ sysconfi g/ net wor k-scri pts/ifcfg-* [http://
www.redhat.com/support/resources’/howto/sysconfig.htmi]

« Hostname and default gateway definition/ et ¢/ sysconf i g/ net wor k [http://
www.redhat.com/support/resources’/howto/sysconfig.htmi]

« Definition of static routes/ et ¢/ sysconfi g/ st ati c-r out es [http://www.redhat.com/sup-
port/resources’howto/sysconfig.html]

» SuSe (version >= 8.0)

« Interface definitions/ et ¢/ sysconfi g/ net wor k/ i f cf g- * [http://sdb.suse.de/en/sdb/html/
mmj_network80.html]

e Static route definition/ et ¢/ sysconf i g/ net wor k/ r out es [http://sdb.suse.de/en/sdb/html/
mmj_network80.html]

« Interface specific static route definition/ et ¢/ sysconfi g/ net wor k/ i frout e-* [http://
sdb.suse.de/en/sdb/html/mmj_network80.html]

» SuSe (version <= 8.0)
« Interface and route definitions/ et c/ rc. confi g
» Debian

« Interface and route definitions/ et ¢/ net wor k/ i nt er f aces [http://documents.made-it.com/
Debian_Internet_Server/Debian_Internet_Server-5.html]

http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://www.redhat.com/support/resources/howto/sysconfig.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://sdb.suse.de/en/sdb/html/mmj_network80.html
http://documents.made-it.com/Debian_Internet_Server/Debian_Internet_Server-5.html
http://documents.made-it.com/Debian_Internet_Server/Debian_Internet_Server-5.html
http://documents.made-it.com/Debian_Internet_Server/Debian_Internet_Server-5.html

Basic IP Connectivity

« Gentoo

« Interface and route definitions/ et ¢/ conf . d/ net [http://www.gentoo.org/doc/en/rc-
scripts.xmi]

» Slackware

* Interface and route definitions/ et ¢/ r c. d/ r c. i net 1 [http://www.slackware.com/con-
fig/network.php]

The format of the networking configuration files differs significantly from distribution to distribution,
yet the tools used by these scripts are the same. This documentation will focus on these tools and how
they instruct the kernel to alter interface and route information. Consult the distribution's documentation
for questions of file format and order of operation.

For the remainder of this document, many examples refer to machines in a hypothetical network. Refer
to the example network description for the network map and addressing scheme.

2. Reading Routes and IP Information

Assuming an already configured machinenamed t ri st an, let'slook at the IP addressing and routing
table. Next we'll examine how the machine communicates with computers (hosts) on the locally reach-
able network. We'll then send packets through our default gateway to other networks. After learning
what a default route is, we'll ook at a static route.

One of the first things to learn about a machine attached to an IP network isits | P address. We'll begin
by looking at amachinenamedt r i st an on the main desktop network (192.168.99.0/24).

Themachinet ri st an isaliveon IP 192.168.99.35 and has been properly configured by the system
administrator. By examining the route and ifconfig output we can learn a good deal about the network
towhicht ri st an isconnected *.

Example 1.1. Sampleifconfig output

[root@ristan]# ifconfig
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast: 192.168.99. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
RX packets: 27849718 errors:1 dropped: 0 overruns: 0 frane: 0
TX packet s: 29968044 errors:5 dropped: 0 overruns: 2 carrier:3
col l'i sions: 0 txqueuel en: 100
RX byt es: 943447653 (899.7 Md) TX bytes: 2599122310 (2478.7 M)
Interrupt: 9 Base address: 0x1000

|l o Li nk encap: Local Loopback
i net addr:127.0.0.1 Mask: 255.0.0.0
UP LOOPBACK RUNNI NG MrU: 16436 Metric:1
RX packets: 7028982 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packets: 7028982 errors: 0 dropped: 0 overruns: 0 carrier:0

! For BSD and UNIX users, the idiom netstat -rn may be more familiar than the common route -n on alinux machine. Both of these commands
provide the same basic information although the formatting is a bit different. For afuller discussion of these, see either Section 4, “netstat” or
Section 1, “route”. For accessto all of the routing features of the linux kernel, useip route instead.

http://www.gentoo.org/doc/en/rc-scripts.xml
http://www.gentoo.org/doc/en/rc-scripts.xml
http://www.gentoo.org/doc/en/rc-scripts.xml
http://www.slackware.com/config/network.php
http://www.slackware.com/config/network.php
http://www.slackware.com/config/network.php

Basic IP Connectivity

col l'i sions: 0 txqueuel en: 0
RX byt es: 1206918001 (1151.0 Md) TX bytes: 1206918001 (1151.0 M)

[root@ristan]# route -n
Kernel IP routing table

Desti nation Gat eway Genmask Fl ags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

For the moment, ignore the loopback interface (lo) and concentrate on the Ethernet interface. Examine
the output of the ifconfig command. We can learn agreat deal about the | P network to which we are
connected simply by reading the ifconfig output. For a thorough discussion of ifconfig, see Section 1,
“ifconfig”.

ThelP addressactiveontri st an is192.168.99.35. This meansthat any |P packetscreated by tri s-
t an will have a source address of 192.168.99.35. Similarly any packet received by t ri st an will have
the destination address of 192.168.99.35. When creating an outbound packet t ri st an will set the des-
tination address to the server's | P. This gives the remote host and the networking devices in between
these hosts enough information to carry packets between the two devices.

Becauset ri st an will advertise that it accepts packets with a destination address of 192.168.99.35,
any frames (packets) appearing on the Ethernet bound for 192.168.99.35 will reacht ri st an. The
process of communicating the ownership of an IP addressis called ARP. Read Section 1.1, “Overview
of Address Resolution Protocol” for a complete discussion of this process.

Thisis fundamental to IP networking. It is fundamental that a host be able to generate and receive pack-
etson an IP address assigned to it. This |P addressis a unique identifier for the machine on the network
to which it is connected.

Common traffic to and from machines today is unicast 1P traffic. Unicast traffic is essentially a conver-
sation between two hosts. Though there may be routers between them, the two hosts are carrying on a
private conversation. Examples of common unicast traffic are protocols such asHTTP (web), SMTP
(sending mail), POP3 (fetching mail), IRC (chat), SSH (secure shell), and LDAP (directory access). To
participate in any of these kinds of traffic, t r i st an will send and receive packets on 192.168.99.35.

In contrast to unicast traffic, there is another common IP networking technique called broadcasting.
Broadcast traffic isaway of addressing all hostsin a given network range with a single destination |P
address. To continue the analogy of the unicast conversation, abroadcast is more like shouting in a
room. Occasionaly, network administrators will refer to broadcast techniques and broadcasting as " chat-
ty network traffic".

Broadcast techniques are used at the Ethernet layer and the I P layer, so the cautious person talks about
Ethernet broadcasts or | P broadcast. Refer to Section 1.1, “Overview of Address Resolution Protocol”,
for more information on a common use of broadcast Ethernet frames.

I P Broadcast techniques can be used to share information with all partners on a network or to discov-
er characteristics of other members of a network. SMB (Server Message Block) asimplemented by Mi-
crosoft products and the samba [http://samba.org/] package makes extensive use of broadcasting tech-
niques for discovery and information sharing. Dynamic Host Configuration Protocol (DHCP [http://
www.isc.org/products/DHCP/]) also makes use of broadcasting techniques to manage | P addressing.

The IP broadcast addressiis, usually, correctly derived from the | P address and network mask although
it can be easily be set explicitly to a different address. Because the broadcast addressis used for autodis-

http://samba.org/
http://samba.org/
http://www.isc.org/products/DHCP/
http://www.isc.org/products/DHCP/
http://www.isc.org/products/DHCP/

Basic IP Connectivity

covery (e.g, SMB under some protocols, an incorrect broadcast address can inhibit a machine's ability to
participate in networked communication 2,

The netmask on the interface should match the netmask in the routing table for the locally connected
network. Typically, the route and the I P interface definition are calculated from the same configuration
data so they should match perfectly.

If you are at al confused about how to address a network or how to read either the traditional notation
or the CIDR notation for network addressing, see one of the CIDR/netmask references in Section 1.3,
“General |P Networking Resources’.

2.1. Sending Packets to the Local Network

We can see from the output above that the IP address 192.168.99.35 falls inside the address space
192.168.99.0/24. We also note that the machinet ri st an will route packets bound for 192.168.99.0/24
directly onto the Ethernet attached to ethO. This line in the routing table identifies a network available on
the Ethernet attached to ethO ("Iface") by its network address ("Destination”) and size (" Genmask").

Desti nation Gat eway Genmask Flags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO

Every host on the 192.168.99.0/24 network should share the network address and netmask specified
above. No two hosts should share the same | P address.

Currently, there are two hosts connected to the example desktop network. Botht ri st an and masq-
gw are connected to 192.168.99.0/24. Thus, 192.168.99.254 (mas - gw) should be reachable from

tri st an. Success of thistest providesevidencethatt ri st an isconfigured properly. N.B., Assume
that the network administrator has properly configured masq- gw. Since the default gateway in any net-
work isan important host, testing reachability of the default gateway also has avalue in determining the
proper operation of the local network.

The ping tool, designed to take advantage of Internet Control Message Protocol (ICMP), can be used
to test reachability of |P addresses. For acommand summary and examples of the use of ping, see Sec-
tion 1, “ping”.

Example 1.2. Testing reachability of alocally connected host with ping

[root@ristan]# ping -c 1 -n 192. 168. 99. 254
PI NG 192. 168. 99. 254 (192. 168. 99. 254) from 192. 168.99. 35 : 56(84) bytes of data.

--- 192.168.99. 254 ping statistics ---

1 packets transmtted, O packets received, 100% packet | oss

PI NG 192. 168. 99. 254 (192. 168. 99. 254) from 192. 168.99. 35 : 56(84) bytes of data.
64 bytes from 192. 168. 99. 254: icnp_seq=0 ttl =255 ti ne=238 usec

--- 192.168.99. 254 ping statistics ---
1 packets transmtted, 1 packets received, 0% packet | oss
round-trip mn/avg/ max/ ndev = 0.238/0.238/0.238/0.000 ns

2 Anincorrect broadcast address often highlights a mismatch of the configured |P address and netmask on an interface. If in doubt, be sure to use
an | P calculator to set the correct netmask and broadcast addresses.

Basic IP Connectivity

2.2. Sending Packets to Unknown Networks Through the
Default Gateway

In Section 2.1, “ Sending Packets to the Local Network”, we verified that hosts connected to the same lo-
cal network can reach each other and, importantly, the default gateway. Now, |et's see what happens to
packets which have a destination address outside the locally connected network.

Assuming that the network administrator allows ping packets from the desktop network into the pub-
lic network, ping can be invoked with the record route option to show the path the packet travels from
tri st antowan- gwand back.

Example 1.3. Testing reachability of non-local hosts

[root@ristan]# ping -R -c 1 -n 205.254. 211. 254
PI NG 205. 254. 211. 254 (205. 254. 211. 254) from 192. 168.99.35 : 56(84) bytes of data.

--- 205.254.211.254 ping statistics ---

1 packets transmtted, O packets received, 100% packet | oss

PI NG 205. 254. 211. 254 (205. 254. 211. 254) from 192. 168.99.35 : 56(84) bytes of data.
64 bytes from 205. 254. 211. 254: icnp_seq=0 ttl =255 ti me=238 usec

RR: 192. 168. 99. 35 (1]
205. 254. 211. 179 (2
205. 254. 211. 254 (3
205. 254. 211. 254
192. 168. 99. 254 (4
192. 168. 99. 35 (5

--- 192.168.99. 254 ping statistics ---
1 packets transmtted, 1 packets received, 0% packet | oss
round-trip mn/avg/ max/ ndev = 0.238/0.238/0.238/0.000 ns

Asthe packet passes through the IP stack ont ri st an, before hitting the Ethernet, t ri st an
addsitsIP to thelist of IPsin the option field in the header.

Thisismasq- gws public I P address.

Our intended destination! (Anybody know why there are two entriesin the record route output?)
Thisismasq- gws private | P address.

Andfinaly, t ri st an will add its P to the option field in the header of the IP packet just before
the packet reaches the calling ping program.

o000 ©

By testing reachability of the local network 192.168.99.0/24 and an | P address outside our local net-
work, we have verified the basic elements of |P connectivity.

To summarize this section, we have:

* identified the IP address, network address and netmask inuseont r i st an using the toolsifconfig
and route

 verifiedthatt ri st an canreach its default gateway

* tested that packets bound for destinations outside our local network reach the intended destination and
return

Basic IP Connectivity

2.3. Static Routes to Networks

Static routes instruct the kernel to route packets for a known destination host or network to arouter or
gateway different from the default gateway. In the example network, the desktop machinet ri st an
would need a static route to reach hostsin the 192.168.98.0/24 network. Note that the branch office net-
work isreachable over an ISDN line. The ISDN router'sIPint ri st an's network is192.168.99.1. This
means that there are two gateways in the example desktop network, one connected to a small branch of-
fice network, and the other connected to the Internet.

Without a static route to the branch office network, t r i st an would use masq- gw as the gateway,
which is not the most efficient path for packets bound for mor gan. Let's examine why a static route
would be better here.

If tri st an generates apacket bound for nor gan and sends the packet to the default gateway, masq-
gwwill forward the packet toi sdn- r out er aswell as generate an ICMP redirect messagetotri s-
t an. ThisICMP redirect messagetellst ri st an to send future packets with a destination address of
192.168.98.82 (nor gan) directly toi sdn-r out er . For afuller discussion of ICMP redirect, see Sec-
tion 10.2, “ICMP Redirects and Routing”.

The absence of a static route has caused two extra packets to be generated on the Ethernet for no benefit.
Not only that, but t ri st an will eventually expire the temporary route entry 3 for 192.168.98.82, which
means that subsequent packets bound for mor gan will repeat this process 4

To solve this problem, add a static routeto t ri st an'srouting table. Below isamaodified routing table
(see Section 3, “Changing IP Addresses and Routes’ to learn how to change the routing table).

Example 1.4. Samplerouting table with a static route

[root@ristan]# route -n
Kernel IP routing table

Desti nation Gat eway Genmask Flags Metric Ref Us
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0
192. 168. 98. 0 192.168.99. 1 255.255.255.0 UG 0 0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0

According to this routing table, any packets with a destination address in the 192.168.98.0/24 network
will be routed to the gateway 192.168.99.1 instead of the default gateway. This will prevent unnecessary
ICMP redirect messages.

These are the basic tools for inspecting the IP address and the routes on a linux machine. Understanding
the output of these tools will help you understand how machines fit into simple networks, and will be a
base on which you can build an understanding of more complex networks.

3. Changing IP Addresses and Routes

This section introduces changing the | P address on an interface, changing the default gateway, and
adding and removing a static route. With the knowledge of ifconfig and route output it's asmall step to
learn how to change I P configuration with these same toals.

3 |f the machine is alinux machine, then the temporary route entry is stored in the routing cache. Consult Section 7, “Routing Cache” for morein-
formation on the routing cache.

4tis quite reasonable to ignore ICM P redirect messages from unknown hosts on the Internet, but ICMP redirect messages on aLAN indicate
that a host has mismatched netmasks or missing static routes.

| face
et hO
et hO
lo

et hO

Basic IP Connectivity

3.1. Changing the IP on a machine

For a practical example, let's say that the branch office server, nor gan, needs to visit the main office
for some hardware maintenance. Since the services on the machine are not in use, it's a convenient time
to fetch some software updates, after configuring the machineto join the LAN.

Once the machine is booted and connected to the Ethernet, it's ready for I P reconfiguration. In order to
join an IP network, the following information is required. Refer to the network map and appendix to
gather the required information below.

* Anunused I P address (Use 192.168.99.14.)

* netmask (What's your guess?)

IP address of the default gateway (What's your guess?)

network address ® (What's your guess?)

The IP address of aname resolver. (Use the IP of the default gateway here 6,)

Example 1.5. ifconfig and route output before the change

[root @organ] # ifconfig ethO
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 53
i net addr:192.168. 98.82 Bcast: 192. 168. 98. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
RX packets:0 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packets: 0 errors:0 dropped: 0 overruns:0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Interrupt: 9 Base address: 0x5000

[root @organ] # route -n
Kernel IP routing table

Destination Gat eway Genmask Fl ags Metric Ref Use | face
192.168.98. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.98.254 0.0.0.0 UG 0 0 0 ethO

The process of readdressing for the new network involves three steps. It is clear in Example 1.5, “ifcon-
fig and route output before the change”, that nor gan is configured for a different network than the
main office desktop network. First, the active interface must be brought down, then a new address must
be configured on the interface and brought up, and finally a new default route must be added. If the net-
working configuration is correct and the process is successful, the machine should be able to connect to
local and non-local destinations.

Example 1.6. Bringing down a network interface with ifconfig

[root @organ] # ifconfig ethO down

5 The network address can be calculated from the | P address and netmask. Refer to Section 1, “ipcalc and other |P addressing calculators’. Espe-
cialy handy isthe variable length subnet mask RFC, RFC 1878 [http://www.isi.edu/in-notes/rfc1878.txt].
5Mm any networks are configured with the name resol ution services on a publicly connected host. See Section 6, “DNS Troubleshooting”.

10

http://www.isi.edu/in-notes/rfc1878.txt
http://www.isi.edu/in-notes/rfc1878.txt

Basic IP Connectivity

Thisisafast way to stop networking on a single-homed machine such as a server or workstation. On
multi-homed hosts, other interfaces on the machine would be unaffected by this command. This method
of bringing down an interface has some serious side effects, which should be understood. Here is a sum-
mary of the side effects of bringing down an interface.

Side effects of bringing down an interface with ifconfig

« al IP addresses on the specified interface are deactivated and removed

« any connections established to or from |Ps on the specified interface are broken ’

« al routesto any destinations through the specified interface are removed from the routing tables
* thelink layer device is deactivated

The next step, bringing up the interface, requires the new networking configuration information. It'sa
good habit to check the interface after configuration to verify settings.

Example 1.7. Bringing up an Ethernet interface with ifconfig

[root @organ] # ifconfig ethO 192. 168. 99. 14 net nask 255. 255. 255. 0 up
[root @organ] # ifconfig ethO
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 53
i net addr:192.168.99. 14 Bcast: 192. 168. 99. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
RX packets:0 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packets: 0 errors:0 dropped: 0 overruns:0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Interrupt: 9 Base address: 0x5000

The second call to ifconfig allows verification of the | P addressing information. The currently config-
ured | P address on eth0 is 192.168.99.14. Bringing up an interface also has a small set of side effects.

Side effects of bringing up an interface

« thelink layer deviceis activated

* therequested IP addressis assigned to the specified interface

« al local, network, and broadcast routes implied by the IP configuration are added to the routing tables

Use ping to verify the reachability of other locally connected hosts or skip directly to setting the default
gateway.

3.2. Setting the Default Route

It should come as no surprise to a close reader (hint), that the default route was removed at the execution
ofi fconfig ethO down. Thecrucia fina step is configuring the default route.

Tltis possible for alinux box which meets the following three criteriato maintain connections and provide services without having the service |P
configured on an interface. It must be functioning as a router, be configured to support non-local binding and be in the route path of the client ma-
chine. Thisis an uncommon need, frequently accomplished by the use of transparent proxying software.

11

Basic IP Connectivity

Example 1.8. Adding a default route with route

[root @organ] # route -n
Kernel IP routing table

Destination Gat eway Genmask Fl ags Metric Ref Use | face
192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo

[root @organ] # route add default gw 192.168. 99. 254
[root @organ] # route -n
Kernel IP routing table

Destination Gat eway Genmask Fl ags Metric Ref Use | face
192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

The routing table on nor gan should look exactly like theinitial routing tableont r i st an. Compare
the routing tables in Example 1.1, “Sample ifconfig output” and Example 1.8, “Adding a default route
with route”.

These changes to the routing table on nor gan will stay in effect until they are manually changed, the
network is restarted, or the machine reboots. With knowledge of the addressing scheme of a network,
and the use of ifconfig and route it's simple to readdress a machine on just about any Ethernet you can
attach to. The benefits of familiarity with these commands extend to non-Ethernet | P networks as well,
because these commands operate on the | P layer, independent of the link layer.

3.3. Adding and removing a static route

Now that nor gan hasjoined the LAN at the main office and can reach the Internet, a static route to the
branch office would be convenient for accessing resources on that network.

A static route is any route entered into a routing table which specifies at least a destination address and a
gateway or device. Static routes are special instructions regarding the path a packet should take to reach

adestination and are usually used to specify reachability of a destination through arouter other than the
default gateway.

Aswe saw above, in Section 2.3, “ Static Routes to Networks’, a static route provides a specific route to
aknown destination. There are several pieces of information we need to know in order to be able to add
astatic route.
« the address of the destination (192.168.98.0)
* the netmask of the destination (255.255.255.0)

« EITHER the IP address of the router through which the destination (192.168.99.1) is reachable

* OR the name of the link layer device to which the destination is directly connected

Example 1.9. Adding a static route with route

[root @organ] # route -n
Kernel IP routing table

12

Basic IP Connectivity

Desti nation Gat eway Genmask Fl ags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

[root @organ] # route add -net 192.168. 98. 0 net mask 255. 255. 255. 0 gw 192. 168.99.1
[root @organ] # route -n
Kernel IP routing table

Desti nation Gat eway Genmask Fl ags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
192. 168. 98. 0 192.168.99. 1 255.255.255.0 UG 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

Example 1.9, “ Adding a static route with route” shows how to add a static route to the 192.168.98.0/24
network. In order to test the reachability of the remote network, ping any machine on the
192.168.98.0/24 network. Routers are usually a good choice, since they rarely have packet filters and are
usually alive.

Because a more specific route is always chosen over aless specific route, it is even possible to support
host routes. These are routes for destinations which are single IP addresses. This can be accomplished
with amanually added static route as below.

Example 1.10. Removing a static network route and adding a static host route

[root @organ] # route del -net 192.168.98. 0 netmask 255. 255.255.0 gw 192. 168.99.1

[root @organ] # route add -net 192. 168. 98. 42 net mask 255. 255. 255. 255 gw 192. 168. 99.
[root @organ] # route add -host 192.168.98.42 gw 192. 168.99. 1

SI OCADDRT: Fil e exists

[root @organ] # route -n

Kernel IP routing table

Desti nati on Gat eway Gennmask Fl ags Metric Ref Use |Iface
192.168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethoO
192.168.98.42 192.168.99.1 255.255.255.255 UGH O 0 0 ethoO
127.0.0.0 0.0.0.0 255.0.0.0 u 0 0 0lo
0.0.0.0 192.168.99.254 0.0.0.0 uG 0 0 0 ethoO

This should serve as an illustration that there is no difference to the kernel in selecting a route between a
host route and a network route with a host netmask. If thisisasurprise or isat all confusing, review the
use of netmasksin IP networking. Some collected links on general 1P networking are available in Sec-
tion 1.3, “General |P Networking Resources’.

4. Conclusion

This chapter has introduced the simplest uses of ifconfig and route to view and alter the IP configura-
tion of ahost. To reiterate the minimum requirements to create an |P network between two machines:

Requirementsfor Two Hosts on the Same Ethernet to Communicate Using | P

 Each host must have a good connection to the Ethernet. Verify a good connection to the Ethernet with
mii-tool, documented in Section 5, “mii-tool”.

13

Basic |P Connectivity

 Each host must share I P network space. Practically, this means that each host should have the same
network address, netmask, and broadcast address ®.

» Each host must have a unique | P address.
* Neither host must block the other's | P packets. (Host based packet filtering may hinder connections!)

This concludes the tour of basic host networking and IP layer configuration as well as some basic tools
available to the linux user. For further documentation on these tools, other tips, tricks, and more ad-
vanced content, keep reading!

8 Techni caly, the two hosts smply need to have routes to each other, but we are discussing the simplest case here, so welll leave this for adiscus-
sion of shared media

14

Chapter 2. Ethernet

The most common link layer network in use today is Ethernet. Although there are several common
speeds of Ethernet devices, they function identically with regard to higher layer protocols. As this docu-
mentation focusses on higher layer protocols (IP), some fine distinctions about different types of Ether-
net will be overlooked in favor of depicting the uniform manner in which IP networks overlay Ethernets.

Address Resolution Protocol provides the necessary mapping between link layer addresses and IP ad-
dresses for machines connected to Ethernets. Linux offers control of ARP requests and replies via sever-
al not-well-known / pr oc interfaces; net / i pv4/ conf / $DEV/ pr oxy_ar p, net /i pv4/ conf/
$DEV/ medi um_ i d, and net /i pv4/ conf/ $DEV/ hi dden. For even finer control of ARP requests
than is available in stock kernels, there are kernel and iproute? patches.

This chapter will introduce the ARP conversation, discuss the ARP cache, a volatile mapping of the

reachable |Ps and MAC addresses on a segment, examine the ARP flux problem, and explore several
ARP filtering and suppression techniques. A section on VLAN technology and channel bonding will
round out the chapter on Ethernet.

1. Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP) hovers in the shadows of most networks. Because of its simplicity,
by comparison to higher layer protocols, ARP rarely intrudes upon the network administrator's routine.
All modern | P-capable operating systems provide support for ARP. The uncommon alternative to ARP
is static link-layer-to-IP mappings.

ARP defines the exchanges between network interfaces connected to an Ethernet media segment in or-
der to map an | P address to alink layer address on demand. Link layer addresses are hardware addresses
(although they are not immutable) on Ethernet cards and | P addresses are logical addresses assigned to
machines attached to the Ethernet. Subsequently in this chapter, link layer addresses may be known by
many different names: Ethernet addresses, Media Access Control (MAC) addresses, and even hardware
addresses. Disputably, the correct term from the kernel's perspectiveis "link layer address" because this
address can be changed (on many Ethernet cards) via command line tools. Nevertheless, these terms are
not realistically distinct and can be used interchangeably.

1.1. Overview of Address Resolution Protocol

Address Resolution Protocol (ARP) exists solely to glue together the | P and Ethernet networking lay-
ers. Since networking hardware such as switches, hubs, and bridges operate on Ethernet frames, they are
unaware of the higher layer data carried by these frames . Similarly, IP layer devices, operating on IP
packets need to be able to transmit their | P data on Ethernets. ARP defines the conversation by which IP
capable hosts can exchange mappings of their Ethernet and | P addressing.

ARP isused to locate the Ethernet address associated with a desired | P address. When a machine has
a packet bound for another 1P on alocally connected Ethernet network, it will send a broadcast Ether-
net frame containing an ARP request onto the Ethernet. All machines with the same Ethernet broadcast
address will receive this packet 2, If amachine receives the ARP request and it hosts the I P requested,

1 some networki ng equipment vendors have built devices which are sold as high performance switches and are capable of performing operations
on higher layer contents of Ethernet frames. Typically, however, a switching device is not capable of operating on |P packets.

2 The kernel uses the Ethernet broadcast address configured on thelink layer device. Thisis rarely anything but ff:ff:ff:ff:ff:ff. In the extraordi-
nary event that thisis not the Ethernet broadcast addressin your network, see Section 3.7, “Changing hardware or Ethernet broadcast address
withip link set”.

15

Ethernet

it will respond with the link layer address on which it will receive packets for that | P address. N.B., the
arp_filter sysctl will ater this behaviour somewhat.

Once the requestor receives the response packet, it associates the MAC address and the IP address. This
information is stored in the arp cache. The arp cache can be manipulated with the ip neighbor and arp
commands. To learn how and when to manipulate the arp cache, see Section 1, “arp”.

In Example 1.2, “ Testing reachability of alocally connected host with ping”, we used ping to test reach-
ability of masqg- gw. Using a packet sniffer to capture the sequence of packets on the Ethernet as aresult
of t ri st an'sattempt to ping, provides an example of ARP in flagrante delicto. Consult the example
network map for avisual representation of the network layout in which this traffic occurs.

Thisisan archetypal conversation between two computers exchanging relevant hardware addressing in
order that they can pass | P packets, and is comprised of two Ethernet frames.

Example 2.1. ARP conver sation captured with tcpdump 3

[root @masqg-gw # tcpdunp -ennqti ethO \(arp or icnp \)

tcpdunp: |istening on ethO

0:80:c8:f8:4a:51 ff:ff:ff:ff:ff:ff 42: arp who-has 192.168.99. 254 tell 192.168.99.
0:80:c8:f8:5c: 73 0:80:c8:f8:4a:51 60: arp reply 192.168.99. 254 is-at 0:80:c8:f8:5¢C
0: 80:¢c8:f8:4a:51 0:80:c8:f8:5c: 73 98: 192.168.99.35 > 192. 168. 99. 254: icnp: echo r
0: 80:¢c8:f8:5c: 73 0:80:c8:f8:4a:51 98: 192.168.99. 254 > 192.168.99.35: icnp: echo r

o
This broadcast Ethernet frame, identifiable by the destination Ethernet address with all bits set
(Ff:ff:ff:ff:ff:ff) contains an ARP request fromt r i st an for |P address 192.168.99.254. There-
quest includes the source link layer address and the IP address of the requestor, which provides
enough information for the owner of the IP address to reply with itslink layer address.

(2]

The ARP reply from masq- gwincludesits link layer address and declaration of ownership of the
requested | P address. Note that the ARP reply is a unicast response to a broadcast request. The
payload of the ARP reply contains the link layer address mapping.

The machine which initiated the ARP request (t r i st an) now has enough information to encap-
sulate an I P packet in an Ethernet frame and forward it to the link layer address of the recipient
(00:80:¢c8:f8:5c:73).

00 Thefinal two packetsin Example 2.1, “ARP conversation captured with tcpdump ” display the
link layer header and the encapsulated | CM P packets exchanged between these two hosts. Examin-
ing the ARP cache on each of these hosts would reveal entries on each host for the other host's link
layer address.

This example is the commonest example of ARP traffic on an Ethernet. In summary, an ARP request is
transmitted in a broadcast Ethernet frame. The ARP reply is a unicast response, containing the desired
information, sent to the requestor's link layer address.

An even rarer usage of ARP is gratuitous ARP, where a machine announces its ownership of an IP ad-
dress on a media segment. The arping utility can generate these gratuitous ARP frames. Linux kernels
will respect gratuitous ARP frames %,

s tepdump is one of a number of utilities for watching packets visible to an interface. For further introduction to tcpdump, see Section 5, “tcp-

4| have repeatedly tested using ar ping in gratuitous ARP mode, and have found that linux kernels appear to respect gratuitous ARP. Thisisa
surprise. Does anybody have ideas about this? Must research!

16

Ethernet

Example 2.2. Gratuitous ARP reply frames

[root @ristan]# arping -q -¢ 3 -A -1 ethO 192. 168. 99. 35

[root @asqg-gw # tcpdunp -¢ 3 -nni eth2 arp

tcpdunp: |istening on eth2

06: 02: 50. 626330 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)
06: 02: 51. 622727 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)
06: 02: 52. 620954 arp reply 192.168.99.35 is-at 0:80:c8:f8:4a:51 (0:80:c8:f8:4a:51)

The frames generated in Example 2.2, “ Gratuitous ARP reply frames’ are ARP repliesto a question
never asked. This sort of ARP is common in failover solutions and also for nefarious sorts of purposes,
such as etter cap [http://ettercap.sourceforge.net/].

Unsolicited ARP request frames, on the other hand, are broadcast ARP requests initiated by a host own-
ing an IP address.

Example 2.3. Unsolicited ARP request frames

[root@ristan]# arping -g -¢ 3 -U -1 eth0O 192. 168. 99. 35

[root @masqg-gw] # tcpdunp -¢ 3 -nni eth2 arp

tcpdunp: |istening on eth2

06: 28: 23. 172068 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35
06: 28: 24. 167290 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35
06: 28: 25. 167250 arp who-has 192.168.99.35 (ff:ff:ff:ff:ff:ff) tell 192.168.99.35
[root @masqg-gw # i p nei gh show

These two uses of ar ping can help diagnose Ethernet and ARP problems--particularly hosts replying for
addresses which do not belong to them.

To avoid |P address collisions on dynamic networks (where hosts are turning on and off, connecting
and disconnecting and otherwise changing | P addresses) duplicate address detection becomes important.
Fortunately, ar ping provides this functionality aswell. A startup script could include the ar ping utili-
ty in duplicate address detection mode to select between | P addresses or methods of acquiring an |P ad-
dress.

Example 2.4. Duplicate Address Detection with ARP

[root @ristan]# arping -D -1 ethO 192. 168. 99. 147; echo $?

ARPI NG 192. 168.99.47 from 0.0.0.0 et hO

Uni cast reply from 192.168. 99. 47 [00: 80: C8: E8: 1E: FC] for 192.168.99. 47 [00: 80: C8: E
Sent 1 probes (1 broadcast(s))

Recei ved 1 response(s)

1

[root@ristan]# tcpdunp -eqtnni eth2 arp

tcpdunp: |istening on eth2

0:80:c8:f8:4a:51 ff:ff:ff:ff:ff:ff 60: arp who-has 192.168.99. 147 (ff:ff:ff.ff:ff:
0:80:c8:e8:1e:fc 0:80:c8:f8:4a:51 42: arp reply 192.168.99. 147 is-at 0:80:c8:e8: le

[root @masqg-gw # i p nei gh show

17

http://ettercap.sourceforge.net/
http://ettercap.sourceforge.net/

Ethernet

Address Resolution Protocol, which provides a method to connect physical network addresses with logi-
cal network addresses is a key element to the deployment of IP on Ethernet networks.

1.2. The ARP cache

In simplest terms, an ARP cache is a stored mapping of |P addresses with link layer addresses. An ARP
cache obviates the need for an ARP request/reply conversation for each |P packet exchanged. Naturally,
this efficiency comes with a price. Each host maintains its own ARP cache, which can become outdated
when ahost is replaced, or an | P address moves from one host to another. The ARP cache is also known
as the neighbor table.

To display the ARP cache, the venerable and cross-platform ar p admirably dispatchesits duty. Aswith
many of the iproute2 tools, more information is available viaip neighbor than with arp. Example 2.5,
“ARP cache listings with arp and ip neighbor” below illustrates the differences in the output between
the output of these two different tools.

Example 2.5. ARP cachelistingswith arp and ip neighbor

[root@ristan]# arp -na

? (192.168.99.7) at 00:80: C8: E8: 1E: FC [ether] on et hO

? (192.168.99.254) at 00:80:C8: F8:5C. 73 [ether] on ethO
[root@ristan]# ip nei ghbor show

192.168.99.7 dev ethO || addr 00: 80: c8: e8: 1le: fc nud reachabl e
192. 168. 99. 254 dev ethO || addr 00:80:c8:f8:5c: 73 nud reachabl e

A major difference between the information reported by ip neighbor and ar p is the state of the proxy
ARP table. The only way to list permanently advertised entries in the neighbor table (proxy ARP en-
tries) iswith the arp.

Entriesin the ARP cache are periodically and automatically verified unless continually used. Along
withnet /i pv4/ nei gh/ $DEV/ gc_st al e_t i e, there are anumber of other parametersin net /
i pv4/ nei gh/ $DEV which control the expiration of entriesin the ARP cache.

When ahost is down or disconnected from the Ethernet, thereis a period of time during which oth-

er hosts may have an ARP cache entry for the disconnected host. Any other machine may display
aneighbor table with the link layer address of the recently disconnected host. Because thereisa
recently known-good link layer address on which the IP was reachable, the entry will abide. At

gc_st al e_ti me the state of the entry will change, reflecting the need to verify the reachability of the
link layer address. When the disconnected host fails to respond ARP requests, the neighbor table entry
will be marked asi nconpl et e

Here are athe possible states for entries in the neighbor table.

Table 2.1. Active ARP cache entry states

ARP cacheentry state meaning action if used
permanent never expires; never verified reset use counter
noarp normal expiration; never verified reset use counter

18

Ethernet

ARP cache entry state meaning action if used

reachable normal expiration reset use counter

stale still usable; needs verification reset use counter;

change state to delay
delay schedule ARP request; reset use counter
needs verification

probe sending ARP reguest reset use counter
incomplete first ARP request sent send ARP request
failed no response received send ARP request

To resume, ahost (192.168.99.7) int r i st an's ARP cache on the example network has just been
disconnected. There are a series of events which will occur ast ri st an's ARP cache entry for

192.168.99.7 expires and gets scheduled for verification. Imagine that the following commands are run

to capture each of these statesimmediately before state change.

Example 2.6. ARP cache timeout

[root @ristan]# ip neighbor show 192. 168. 99. 7

192.168.99.7 dev ethO |l addr 00:80:c8:e8: 1le:fc nud reachabl e o

[root @ristan]# ip neighbor show 192. 168. 99. 7

192.168.99. 7 dev ethO |l addr 00:80:c8:e8:1le:fc nud stale (2]

[root @ristan]# ip neighbor show 192. 168. 99. 7

192.168.99.7 dev ethO |l addr 00:80:c8: e8: 1e:fc nud del ay (3]

[root@ristan]# ip nei ghbor show 192. 168. 99. 7

192.168.99. 7 dev ethO |l addr 00:80:c8: e8: 1e:fc nud probe o

[root@ristan]# i p nei ghbor show 192. 168. 99. 7

192.168.99.7 dev ethO nud inconplete (5]

O Beforethe entry has expired for 192.168.99.7, but after the host has been disconnected from the
network. During thistime, t r i st an will continue to send out Ethernet frames with the destina-
tion frame address set to the link layer address according to this entry.

® Ithasbeengc_st al e_ti me seconds since the entry has been verified, so the state has changed
to stale.

© Thisentry in the neighbor table has been requested. Because the entry wasin a stale state, the link
layer address was used, but now the kernel needs to verify the accuracy of the address. The kernel
will soon send an ARP request for the destination 1P address.

O Thekernd isactively performing address resolution for the entry. It will send atotal of
ucast _sol i cit framesto thelast known link layer address to attempt to verify reachability of
the address. Failing this, it will send ncast _sol i ci t broadcast frames before altering the ARP
cache state and returning an error to any higher layer services.

O After all attempts to reach the destination address have failed, the entry will appear in the neighbor

tablein this state.

The remaining neighbor table flags are visible when initial ARP requests are made. If no ARP cache en-
try exists for arequested destination IP, the kernel will generate ntast _sol i ci t ARP requests until
receiving an answer. During this discovery period, the ARP cache entry will be listed in an incompl ete
state. If the lookup does not succeed after the specified number of ARP requests, the ARP cache entry
will belisted in afailed state. If the lookup does succeed, the kernel enters the response into the ARP
cache and resets the confirmation and update timers.

19

Ethernet

After receipt of a corresponding ARP reply, the kernel enters the response into the ARP cache and resets
the confirmation and update timers.

For machines not using a static mapping for link layer and | P addresses, ARP provides on demand map-
pings. The remainder of this section will cover the methods available under linux to control the address
resolution protocol.

1.3. ARP Suppression

Complete ARP suppression is not difficult at all. ARP suppression can be accomplished under linux on a
per-interface basis by setting the noarp flag on any Ethernet interface. Disabling ARP will require static
neighbor table mappings for al hosts wishing to exchange packets across the Ethernet.

To suppress ARP on an interface simply useip link set dev $DEV arp off asin Example B.7, “Using ip
link set to change device flags’ or ifconfig $DEV -arp asin Example C.5, “ Setting interface flags with
ifconfig”. Complete ARP suppression will prevent the host from sending any ARP requests or respond-
ing with any ARP replies.

1.4. The ARP Flux Problem

When alinux box is connected to a network segment with multiple network cards, a potential problem
with the link layer address to | P address mapping can occur. The machine may respond to ARP requests
from both Ethernet interfaces. On the machine creating the ARP request, these multiple answers can
cause confusion, or worse yet, non-deterministic population of the ARP cache. Known as ARP flux 5,
this can lead to the possibly puzzling effect that an |P migrates non-deterministically through multiple
link layer addresses. It'simportant to understand that ARP flux typically only affects hosts which have

multiple physical connections to the same medium or broadcast domain.

Thisisasimpleillustration of the problem in a network where a server has two Ethernet adapters con-
nected to the same media segment. They need not have IP addresses in the same I P network for the ARP
reply to be generated by each interface. Note the first two replies received in response to the ARP broad-
cast request. These replies arrive from conflicting link layer addresses in response to this request. Also
notice the greater time required for the sending and receiving hosts to process the broadcast ARP request
frames than the unicast frames which follow (probes two and three).

Example 2.7. ARP flux

[root @eal -client]# arping -1 ethO -c 3 10.10. 20. 67

ARPI NG 10. 10. 20. 67 from 10. 10. 20. 33 et hO

Uni cast reply from 10.10. 20. 67 [00: 80: C8: 7E: 71: D4] 11. 298ns
Uni cast reply from 10. 10. 20. 67 [00: 80: C8: E8: 1E: FC] 12. 0778
Uni cast reply from 10. 10. 20. 67 [00: 80: C8: E8: 1E: FC] 1. 542ns
Uni cast reply from 10. 10. 20. 67 [00: 80: C8: E8: 1E: FC] 1.547ns
Sent 3 probes (1 broadcast(s))

Recei ved 4 response(s)

There are four solutions to this problem. The common solution for kernel 2.4 harnesses the
arp_filter sysctl, whilethe common solution for kernel 2.2 takes advantage of the hi dden sysctl.
These two solutions alter the behaviour of ARP on a per interface basis and only if the functionality has
been enabled.

5| have seen it called names other than ARP | ux--anybody out there heard of this called anything besides ARP flux?

20

Ethernet

Alternate solutions which provide much greater control of ARP (possibly documented here at alat-
er date) include Julian Anastasov'sip ar p [http://www.ssi.bg/~jal#iparp] tool and his noarp route flag
[http://www.ssi.bg/~jal#noarp]. While these tools were conceived in the course of the Linux Virtual
Server [http://www.linuxvirtual server.org/] project, they have practical application outside this realm.

1.4.1. ARP flux prevention with arp_filter

One method for preventing ARP flux involvesthe use of net / i pv4/ conf/ $DEV/ arp_filter.In
short, theuseof arp_fi | t er causestherecipient (inthe case below, r eal - ser ver) to perform a
route lookup to determine the interface through which to send the reply, instead of the default behaviour
(shown above), replying from all Ethernet interfaces which receive the request.

Thearp_filter solution can have unintended effectsif the only route to the destination is through
one of the network cards. In Example 2.8, “ Correction of ARP flux with conf / $DEV/ arp_filter”,
real - cl i ent will demonstrate this. Thisinstructive example should highlight the shortcomings of
thearp_filter solutioninvery complex networks where finer-grained control is required.

Ingeneral, thear p_fi | t er solution sufficiently solves the ARP flux problem. First, hosts do not gen-
erate ARP requests for networks to which they do not have a direct route (see Section 2, “Routing to Lo-
cally Connected Networks”) and second, when such a route exists, the host normally chooses a source
address in the same network as the destination. So, thear p_fi | t er solution isagood genera so-
[ution, but does not adequately address the occasional need for more control over ARP requests and
replies.

Example 2.8. Correction of ARP flux with conf / $DEV/ arp_fil ter

[root @eal -server]# echo 1 > /proc/sys/net/ipva/conf/all/arp filter
[root @eal -server]# echo 1 > /proc/sys/net/ipv4/conf/ethO/arp filter
[root @eal -server]# echo 1 > /proc/sys/net/ipv4/conf/ethl/arp filter
[root @eal -server]# i p address show dev et hO
2: ethO: <BROADCAST, MIULTI CAST, UP> nmtu 1500 qdisc pfifo_fast glen 100
i nk/ether 00:80:c8:e8:1e:fc brd ff:ff:ff:ff:ff:ff
i net 10. 10. 20. 67/ 24 scope gl obal ethO
[root @eal -server]# i p address show dev et hl
3: ethl: <BROADCAST, MILTI CAST, UP> nmtu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:7e:71:d4 brd ff:ff:ff:ff:ff:ff
i net 192.168.100.1/24 brd 192. 168. 100. 255 scope gl obal ethl (1]
[root @eal -client]# arping -1 ethO -c 3 10.10. 20. 67
ARPI NG 10. 10. 20. 67 from 10. 10. 20. 33 et hO
Uni cast reply from 10. 10. 20. 67 [00: 80: C8: E8: 1E: FC] 0. 882ns
Uni cast reply from 10. 10. 20. 67 [00: 80: C8: E8: 1E: FC] 1. 221ns
Uni cast reply from 10.10. 20. 67 [00: 80: C8: E8: 1E: FC] 1. 487ns (2]
Sent 3 probes (1 broadcast(s))
Recei ved 3 response(s)
[root @eal -client]# arping -1 ethO -c 3 192. 168. 100. 1
ARPI NG 192. 168. 100. 1 from 10. 10. 20. 33 et h0
Uni cast reply from 192.168. 100. 1 [00: 80: C8: E8: 1E: FC] 0. 877ns
Uni cast reply from 192.168. 100. 1 [00: 80: C8: E8: 1E: FC] 1.517ns
Uni cast reply from 192.168. 100.1 [00: 80: C8: E8: 1E: FC] 1. 661ns (3]
Sent 3 probes (1 broadcast(s))
Recei ved 3 response(s)
[root @eal -client]# ip neighbor del 192.168.100.1 dev ethO o
[root @eal -client]# ip address add 192. 168. 100. 2/ 24 brd + dev eth0O ©

21

http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#noarp
http://www.ssi.bg/~ja/#noarp
http://www.linuxvirtualserver.org/
http://www.linuxvirtualserver.org/
http://www.linuxvirtualserver.org/

Ethernet

[root @eal -client]# arping -1 ethO -c 3 192. 168. 100. 1

ARPI NG 192. 168. 100. 1 from 192. 168. 100. 2 et hO

Uni cast reply from 192. 168. 100. 1 [00: 80: C8: 7E: 71: D4] 0. 804ns

Uni cast reply from 192. 168. 100. 1 [00: 80: C8: 7E: 71: D4] 1. 381ms

Uni cast reply from 192. 168. 100. 1 [00: 80: C8: 7E: 71: D4] 2. 487ms (6]
Sent 3 probes (1 broadcast(s))

Recei ved 3 response(s)

O Setthesysctl variablesto enablethear p_fi | t er functionality. After this, you might ex-
pect that ARP replies for 10.10.20.67 would only advertise the link layer address on ethO
(00:80:c8:e8:1efc).

® Hereisthe expected behaviour. Only one reply comesin for the IP 10.10.20.67 after the
arp_filter sysctl has been enabled. The reply originates from the interfaceonr eal - ser v-
er which actually hosts the IP address. Note that the source address on the ARP queriesis
10.10.20.33, and that the ARP query causesr eal - ser ver to perform aroute lookup on
10.10.20.33 to choose an interface from which to send the reply.

® Hereg real -client requeststhelink layer address of the host 192.168.100.1, but the source IP
on the request packet (chosen according to the rules for source address selection) is 10.10.20.33.
Whenr eal - ser ver looks up aroute to this destination, it chooses its eth0, and replies with the
link layer address of its eth0. Conventional networking needs should not run afoul of this oddity of
thearp_filter ARPflux prevention technique.

O Remove the entry in the neighbor table before testing again.

© By adding an IP address in the same network as the intended destination (which would be rather
common where multiple IP networks share the same medium or broadcast domain), the kernel can
now select a different source address for the ARP request packets.

O Notethe source address of the ARP queriesis now 192.168.100.2. Whenr eal - ser ver per-
forms aroute lookup for the 192.168.100.0/24 destination, the chosen path is through ethl. The
ARP reply packets now have the correct link layer address.

Ingeneral, thear p_fi | t er solution should suffice, but this knowledge can be key in determining
whether or not an aternate solution, such as an ARP filtering solution are necessary.

1.4.2. ARP flux prevention with hi dden

The ARP flux problem can aso be combatted with akernel patch [http://www.ssi.bg/~jal#hidden] by Ju-
lian Anastasov, which was incorporated into the 2.2.14+ kernel series, but never into the 2.4+ kernel se-
ries. Therefore, the functionality may not be availablein all kernels.

Thesysctl net /i pv4/ conf/ $DEV/ hi dden toggles the generation of ARP replies for requested | Ps.
It marks an interface and all of its IP addresses invisible to other interfaces for the purpose of ARP re-
guests. When an ARP request arrives on any interface, the kernel tests to seeif the IP addressislocally
hosted anywhere on the machine. If the IP isfound on any interface, the kernel will generate areply.

Since thisis not always desirable, the hi dden sysctl can be employed. This prevents the kernel from
finding the I P address when testing to see what | P addresses are locally hosted. The kernel can always
find 1Ps hosted on the interface on which the packet arrived, but it cannot find addresses which are

hi dden.

As shown in Example 2.9, “Correction of ARP flux with net / $DEV/ hi dden”, not only can ARP flux
be corrected, but sensitive information about the | P addresses available on alinux box can be safeguard-
ed 8. This makesthe hi dden sysctl useful for preventing unwanted IP disclosure via ARP on mul-
ti-homed hosts, in addition to preventing ARP flux on hosts connected to the same network medium.

6 Consider a masquerading firewall which answers ARP reguests on a public segment for 1Ps hosted on an internal interface. Thisamountsto in-
advertent exposure of internal addressing, and can be used by an attacker as part of a data-gathering or reconaissance operation on a network.

22

http://www.ssi.bg/~ja/#hidden
http://www.ssi.bg/~ja/#hidden

Ethernet

Example 2.9. Correction of ARP flux with net / $DEV/ hi dden

[root @eal -client]# arping -1 ethO -c 1 172.19. 22. 254

ARPI NG 172. 19. 22. 254 from 172.19.22.2 ethO

Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2D] 0. 704ns
Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2E] 0. 844ns
Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2F] 0. 918ms
Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2C] 0. 974ns
Sent 1 probes (1 broadcast(s))

Recei ved 4 response(s)

[root @eal -server]# for i in all eth2 eth3 eth4 eth5 ; do
> echo 1 > /proc/sys/net/ipv4/conf/$i/hidden
> done

[root @eal -client]# arping -1 ethO -c 2 172.19. 22. 254

ARPI NG 172. 19. 22. 254 from 172.19.22.2 ethO

Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2D] 0. 710ms
Uni cast reply from 172. 19. 22. 254 [00: 60: F5: 08: 8A: 2D] 0. 624ns
Sent 2 probes (1 broadcast(s))

Recei ved 2 response(s)

These are two examples of methods to prevent ARP flux. Other alternatives for correcting this problem
are documented in Section 3, “ARP filtering”, where much more sophisticated tools are available for
mani pulation and control over the ARP functions of linux.

2. Proxy ARP

Occasionaly, an IP network must be split into separate segments. Proxy ARP can be used for increased
control over packets exchanged between two hosts or to limit exposure between two hostsin asingle |P
network. The technique of proxy ARP is commonly used to interpose a device with higher layer func-
tionality between two other hosts. From a practical standpoint, thereis little difference between the func-
tions of a packet-filtering bridge and afirewall performing proxy ARP. The manner by which the inter-
posed device receives the packets, however, istremendously different.

23

Ethernet

Example 2.10. Proxy ARP Network Diagram

p
eth2 — 192.168.

masq—
eth3 — 192,168

Proxy ARP

‘.

ARP requests for

192.168.100.1 will
(eth0 — 192.168.100.17) always return (eth0 — 192.168
00:80:¢8:18:5¢:71

1solde Service—re

b w b

The device performing proxy ARP (masq- gw) responds for all ARP queries on behalf of |Ps reachable
on interfaces other than the interface on which the query arrives.

FIXME; manual proxy ARP (see also Section 3, “Breaking a network in two with proxy ARP”), kernel
proxy ARP, and the newly supported sysctl net / i pv4/ conf / $DEV/ medi um_i d.

For a brief description of the use of medium_id, see Julian's remarks [http://www.ssi.bg/~ja/
#medium_id].

FIXME; Kernel proxy ARP with the sysctl net / i pv4/ conf / $DEV/ pr oxy_ar p.

Note....until this section is written, this post [http://mailman.ds9a.nl/piper-
mail/lartc/200392/008315.html] by Don Cohen is rather instructive.

3. ARP filtering

This section should be part of the "ghetto" which will include documentation on ip arp. There's nothing
more to add here at the moment (low priority).

ip arp help
Usage: ip arp [list | flush] [RULE]

24

http://www.ssi.bg/~ja/#medium_id
http://www.ssi.bg/~ja/#medium_id
http://www.ssi.bg/~ja/#medium_id
http://mailman.ds9a.nl/pipermail/lartc/2003q2/008315.html
http://mailman.ds9a.nl/pipermail/lartc/2003q2/008315.html
http://mailman.ds9a.nl/pipermail/lartc/2003q2/008315.html

Ethernet

ip arp [append | prepend | add | del | change | replace | test] RULE
RULE := [table TABLE NAME] [pref NUMBER] [fromPREFIX] [to PREFI X]
[iif STRING] [oif STRING] [IIfromPREFIX] [Ilto PREFIX]
[broadcasts | [unicasts | [ACTION] [ALTER]
TABLE NAME := [input | forward | output]
ACTION := [deny | allow]
ALTER := [src IP] [Ilsrc LLADDR] [|l dst LLADDR]

Theip arp [http://www.ssi.bg/~jal#iparp] tool. Patches and code for the noarp route flag [http://
WWW.Ssi.bg/~jal#noarp].

FIXME; add afew paragraphson ip arp and the noarp flag.

4. Connecting to an Ethernet 802.1g VLAN

Virtual LANs are away to take a single switch and subdivide it into logical media segments. A single
switch port in a VLAN-capable switch can carry packets from multiple virtual LANs and linux can un-
derstand the format of these Ethernet frames. For more on this, see the linux 802.1q VLAN implementa-
tion site [http://www.candel atech.com/~greear/vlan.html].

Kernelsin the late 2.4 series have support for VLAN incorporated into the stock release. The veonfig
tool, however needs to be compiled against the kernel source in order to provide userland configurability
of the kernel support for VLANS.

There are afew items of note which may prevent quick adoption of VLAN support under linux. Ben

M cK eegan wrote a good summary [http://www.wanfear.com/pipermail /vlan/2002g4/002882.html] of
the MTU/MRU issuesinvolved with VLANSs and 10/100 Ethernet. Gigabit Ethernet drivers are not ham-
strung with this problem. Consider using gigabit Ethernet cards from the outset to avoid these potential
problems.

Example 2.11. Bringing up a VLAN interface

[root @eal -router]# vconfig add ethO 7
[root @eal -router]# ip addr add dev ethO.7 192. 168. 30. 254/ 24 brd +
[root @eal -router]# ip |link set dev eth0.7 up

Each interface defined using the vconfig utility takes its name from the base device to which it has been
bound, and appendsthe VLAN tag ID, as shown in Example 2.11, “Bringing up aVLAN interface’.

This documentation is sparse. Visit the main site [http://www.candel atech.com/~greear/vlan.html] and
the VLAN mailing list archives [http://www.wanfear.com/pipermail/vian/].

5. Link Aggregation and High Availability with
Bonding

Networking vendors have long offered a functionality for aggregating bandwidth across multiple physi-
cal links to aswitch. This allows a machine (frequently a server) to treat multiple physical connections
to switch unitsas asingle logical link. The standard moniker for this technology is |EEE 802.3ad, al-

25

http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#noarp
http://www.ssi.bg/~ja/#noarp
http://www.ssi.bg/~ja/#noarp
http://www.candelatech.com/~greear/vlan.html
http://www.candelatech.com/~greear/vlan.html
http://www.candelatech.com/~greear/vlan.html
http://www.wanfear.com/pipermail/vlan/2002q4/002882.html
http://www.wanfear.com/pipermail/vlan/2002q4/002882.html
http://www.candelatech.com/~greear/vlan.html
http://www.candelatech.com/~greear/vlan.html
http://www.wanfear.com/pipermail/vlan/
http://www.wanfear.com/pipermail/vlan/

Ethernet

though it is known by the common names of trunking, port trunking and link aggregation. The conven-
tional use of bonding under linux is an implementation of this link aggregation.

A separate use of the same driver allows the kernel to present asingle logical interface for two physical
links to two separate switches. Only one link is used at any given time. By using media independent in-
terface signal failure to detect when a switch or link becomes unusable, the kernel can, transparently to
userspace and application layer services, fail to the backup physical connection. Though not common,
the failure of switches, network interfaces, and cables can cause outages. As a component of high avail-
ability planning, these bonding techniques can help reduce the number of single points of failure.

For more information on bonding, seethe Docunent at i on/ net wor ki ng/ bondi ng. t xt from
the linux source code tree.

5.1. Link Aggregation

Bonding for link aggregation must be supported by both endpoints. Two linux machines connected via
crossover cables can take advantage of link aggregation. A single machine connected with two physical
cables to a switch which supports port trunking can use link aggregation to the switch. Any conventional
switch will become ineffably confused by a hardware address appearing on multiple ports simultaneous-

ly.

Example 2.12. Link aggregation bonding

[root @eal -server root]# nmodprobe bonding

[root @eal -server root]# ip addr add 192. 168. 100. 33/ 24 brd + dev bondO
[root @eal -server root]# ip link set dev bondO up

[root @eal -server root]# ifenslave bond0 eth2 eth3

mast er has no hw address assigned; getting one from sl ave!
The interface eth2 is up, shutting it down it to enslave it.
The interface eth3 is up, shutting it down it to enslave it.
[root @eal -server root]# ifenslave bond0 eth2 eth3

[root @eal -server root]# cat /proc/net/bond0O/info

Bondi ng Mbde: | oad bal anci ng (round-robin)

M1 Status: up

M| Polling Interval (ms): O

Up Delay (ns): O

Down Delay (ms): O

Sl ave Interface: eth2
M1 Status: up
Link Failure Count: O

Sl ave Interface: eth3
M1 Status: up
Link Failure Count: O

FIXME; Need an experiment here....maybe a tcpdump to show how the management frames appear on
thewire.

This Beowulf software page [http://www.beowul f.org/software/bonding.html] describesin abit more
detail the rationale and a practical application of linux channel bonding (for link aggregation).

26

http://www.beowulf.org/software/bonding.html
http://www.beowulf.org/software/bonding.html

Ethernet

5.2. High Availability

Bonding support under linux is part of a high availability solution. For an entry point into the complexi-

ty of high availability in conjunction with linux, see the linux-ha.org [http://linux-ha.org/] site. To guard
against layer two (switch) and layer one (cable) failure, a machine can be configured with multiple phys-
ical connections to separate switch devices while presenting a single logical interface to userspace.

The name of the interface can be specified by the user. It is commonly bond0 or something similar. As
alogical interface, it can be used in routing tables and by tcpdump.

The bond interface, when created, has no link layer address. In the example below, an address is manu-
aly added to the interface. See Example 2.12, “Link aggregation bonding” for an example of the bond-
ing driver reporting setting the link layer address when the first device is enslaved to the bond (doesn't
that sound cruel!).

Example 2.13. High availability bonding

[root @eal -server root]# nmodprobe bondi ng node=1 m i nbn=100 downdel ay=200 updel ay=
[root @eal -server root]# ip link set dev bond0 addr 00: 80: c8: e7: ab: 5¢
[root @eal -server root]# ip addr add 192. 168. 100. 33/ 24 brd + dev bond0
[root @eal -server root]# ip |ink set dev bondO up
[root @eal -server root]# ifenslave bond0 eth2 eth3
The interface eth2 is up, shutting it down it to enslave it.
The interface eth3 is up, shutting it down it to enslave it.
[root @eal -server root]# ip link show eth2 ; ip link show eth3 ; ip |ink show bond
4: et h2: <BROADCAST, MIULTI CAST, SLAVE, UP> ntu 1500 qdi sc pfifo_fast naster bondO gle
i nk/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:ff:ff
5. et h3: <BROADCAST, MULTI CAST, NOARP, SLAVE, DEBUG, AUTOVEDI A, PORTSEL, NOTRAI LERS, UP> n
i nk/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:ff:ff
58: bond0: <BROADCAST, MULTI CAST, MASTER, UP> nt u 1500 qdi sc noqueue
i nk/ether 00:80:c8:e7:ab:5c brd ff:ff:ff:ff:.ff:ff

Immediately noticeable, thereisanew flag in theip link show output. The MASTER and SLAVE flags
clearly report the nature of the relationship between the interfaces. Also, the Ethernet interfaces indicate
the master interface via the keywords mast er bondO.

Note also, that al three of the interfaces share the same link layer address, 00: 80: ¢8: e7: ab: 5c.

FIXME; What doe DEBUG,AUTOMEDIA ,PORTSEL ,NOTRAILERS mean?

27

http://linux-ha.org/
http://linux-ha.org/

Chapter 3. Bridging

Bridging, once the realm of hardware devices, can also be performed by alinux machine. Along with
bridging comes the capability of filtering and transforming frames (or even higher layer protocols) via
hooks at the Ethernet layer with the ebtables and iptables commands.

Linux can function as a bridge, the equivalent of an extremely power-thirsty switch. For now, the best
place to go isthe main linux bridging site [http://bridge.sourceforge.net/].

Often ebtables and bridging are used together.

1. Concepts of Bridging

2. Bridging and Spanning Tree Protocol

3. Bridging and Packet Filtering

Thereis aBridge and Netfilter HOWTO [http://www.tldp.org/HOWTO/Ethernet-Bridge-netfil-
ter-HOWTO.html] which illustrates the use of a bridge as a firewall.

4. Traffic Control with a Bridge

Yes, Virginia, it can be done.

5. ebtables

In order to take advantage of ebtablesthe machine needs to be running as a bridge. (Accurate, nicht
wahr?)

If you believe in really scary stuff, you can run the bridging code with netfilter, so you can manipulate
| P packets transparently on your bridge. For more on this, see the documentation of bridging and fire-
walling [http://bridge.sourceforge.net/docs.html]. The firewall and bridge architectureis part of the de-
velopment branch of the kernel 2.5 series.

28

http://bridge.sourceforge.net/
http://bridge.sourceforge.net/
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://bridge.sourceforge.net/docs.html
http://bridge.sourceforge.net/docs.html
http://bridge.sourceforge.net/docs.html

Chapter 4. IP Routing

Routing is fundamental to the design of the Internet Protocol. | P routing has been cleverly designed to
minimize the complexity for leaf nodes and networks. Linux can be used as aleaf node, such as awork-
station, where setting the | P address, netmask and default gateway suffices for all routing needs. Alter-
natively, the same routing subsystem can be used in the core of a network connecting multiple public
and private networks.

This chapter will begin with the basics of IP routing with linux, routing to locally connected destina-
tions, routing to destinations through the default gateway, and using linux as a router. Subsequent topics
will include the kernel's route selection algorithm, the routing cache, routing tables, the routing policy
database, and issues with ICMP and routing.

The precinct of this documentation is primarily static routing. Though dynamic routing is important to
large networks, Internet service providers, and backbone providers, this documentation is targetted for
smaller networks, particularly networks which use static routing. Nonetheless, the concepts governing
the manipulation of a packet in the kernel, and how routing decisions are made by the kernel are applica-
ble to dynamic routing environments.

The linux routing subsystem has been designed with large scale networks in mind, without forgetting the
need for easy configurability for leaf nodes, such as workstations and servers.

1. Introduction to Linux Routing

The design of 1P routing allows for very simple route definitions for small networks, while not hinder-
ing the flexibility of routing in complex environments. A key concept in IP routing is the ability to de-
fine what addresses are locally reachable as opposed to not directly known destinations. Every IP capa-
ble host knows about at least three classes of destination: itself, locally connected computers and every-
where else.

Most fully-featured | P-aware networked operating systems (all unix-like operating systems with |P
stacks, modern Macintoshes, and modern Windows) include support for the loopback device and IP.
Thisisan IP and range configured on the host machine itself which allows the machine to talk to itself.
Linux systems can communicate over |P on any locally configured IP address, whether on the loopback
device or not. Thisisthefirst class of destinations: locally hosted addresses.

The second class of 1P addresses are addresses in the locally connected network segment. Each machine
with a connection to an | P network can reach a subset of the entire | P address space on its directly con-
nected network interface.

All other hosts or destination IPsfall into athird range. Any IP which is not on the machine itself or lo-
cally reachable (i.e. connected to the same media segment) is only reachable through an IP routing de-
vice. This routing device must have an IP address in alocally reachable | P address range.

All IP networking is a permutation of these three fundamental concepts of reachability. This list summa-
rizes the three possible classifications for reachability of destination I P addresses from any single source
machine.

1. ThelP addressis reachable on the machine itself. Under linux thisis considered scope host and is
used for 1Ps bound to any network device including loopback devices, and the network range for the
loopback device. Addresses of this nature are called local IPs or locally hosted I Ps.

2. The IP address is reachable on the directly connected link layer medium. Addresses of thistype are
called locally reachable or (preferred) directly reachable IPs.

29

IP Routing

3. ThelP address is ultimately reachable through arouter which is reachable on a directly connected
link layer medium. This class of |P addresses is only reachable through a gateway.

Asapractical description of the above, this partial diagram of the example network shows two machines
connected to 192.168.99.0/24. Ont ri st an the |P addresses 127.0.0.1 (Iloopback--not pictured) and
192.168.99.35 are considered locally hosted | P addresses. The directly reachable |P addresses fall inside
the 192.168.99.0/24 network. Any other destination addresses are only reachable through a gateway,
probably masq- gw.

Example 4.1. Classes of | P addr esses

Internet

lo - 127.0.0.]
masq—gw

eth2 — 192.168.99.254)

192.168.99.0/24

" ethO = 192.168.99.35
(ristan
lo — 127.0.0.]

~ v

Before examining the routing system in more detail, there are some termsto identify and define. These
terms are general 1P networking terms and should be familiar to users who have used | P on other operat-
ing systems and networking equipment.

octet
IP address, |P

host address portion
The rightmost bits (frequently octets) in an | P address which are not a

part of the network address. The part of an IP address which identifies
the computer on a network independent of the network.

30

IP Routing

Examples: 192.168.1.27/24, 10.10.17.24/8, 172.20.158.75/16.
network address, network,
network prefix, subnetwork
address

network mask, netmask, net-
work bitmask

prefix length

broadcast address

These definitions are common to | P networking in general, and are understood by all in the IP network-
ing community. For less terse introductory material on matters of |P network addressing in general, see
Section 1.3, “General |P Networking Resources’.

Asis apparent from the interdependencies amongst the above definitions, each term defines a separate

part of the concept of the relationships between an |P address and its network. A good IP calculator can
assist in mastering these IP fundamentals.

Example 4.2. Using ipcalc to display I P information

[user @wrkstation]$ ipcalc -n 12.7.149.0/ 26

Addr ess: 12.7.149.0 00001100. 00000111. 10010101. 0O 000000

Net mask: 255.255.255.192 = 26 11111111.111121111.11111111.11 000000

Wl dcard: 0.0.0.63 00000000. 00000000. 00000000. 00 111111

=>

Net wor k: 12.7.149. 0/ 26 00001100. 00000111. 10010101. 00 000000 (C ass A)
Broadcast: 12.7.149.63 00001100. 00000111. 10010101. 00 111111

Host M n: 12.7.149.1 00001100. 00000111. 10010101. 00O 000001

Host Max: 12.7. 149. 62 00001100. 00000111. 10010101. 00 111110

Host s/ Net: 62

A tool similar to the one shown in Example 4.2, “Using ipcalc to display |P information” can assist in
visualizing the relationships among | P addressing concepts.

Subequently, this chapter will introduce some concrete examples of routing in areal network. The ex-
ample network illustrates this network and all of the addresses involved.

2. Routing to Locally Connected Networks

Any IP network is defined by two sets of numbers: network address and netmask. By convention, there
are two ways to represent these two numbers. Netmask notation is the convention and tradition in | P net-
working athough the more succinct CIDR notation is gaining popularity.

In the example network, i sol de has IP address 192.168.100.17. In CIDR notation, i sol de's address
i$192.168.100.17/24, and in traditional netmask notation, 192.168.100.17/255.255.255.0. Any of the
IP calculators, confirms that the first usable IP address is 192.168.100.1 and the last usable | P address
i$192.168.100.254. Importantly, the I P network address, 192.168.100.0/24, is reachable through the

reach any |P address in this range directly onThe locally connected Ethernet segment.

IP Routing

Below istherouting table for i sol de, first shown with the conventional route -n output 2 and then
with theip route show 3 command. Each of these tools conveys the same routing table and operates on
the same kernel routing table. For more on the routing table displayed in Example 4.3, “Identifying the
locally connected networks with route”, consult Section 8.3, “The Main Routing Table".

Example 4.3. | dentifying the locally connected networ ks with route

[root @sol de] # route -n
Kernel IP routing table

Destination Gat eway Genmask Fl ags Metric Ref Use | face
192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192. 168. 100. 254 0.0.0.0 UG 0 0 0 ethO

[root @sol de]# ip route show

192. 168. 100. 0/ 24 dev ethO scope |link
127.0.0.0/8 dev I o scope |ink
default via 192.168. 100. 254 dev et hO

In the above example, the locally reachable destination is 192.168.100.0/255.255.255.0 which can al-
so be written 192.168.100.0/24 asin ip route show. In classful networking terms, the network to which
i sol de isdirectly connected is called aclass C sized network.

When aprocessoni sol de needsto send a packet to another machine on the locally connected net-
work, packets will be sent from 192.168.100.17 (i sol de's1P). The kernel will consult the routing ta-
ble to determine the route and the source address to use when sending this packet. Assuming the des-
tination is 192.168.100.32, the kernel will find that 192.168.100.32 falls inside the | P address range
192.168.100.0/24 and will select this route for the outbound packet. For further details on source ad-
dress selection, see Section 6, “ Source Address Selection”. The source address on the outbound pack-
et conveys vital information to the host receiving the packet. In order for the packet to be able to return,
i sol de hasto use an |P addressthat islocally available, 192.168.100.32 hasto have aroutetoi sol -
de and neither host must block the packet.

The packet will be sent to the locally connected network segment directly, becausei sol de interprets
from the routing table that 192.168.100.32 is directly reachable through the physical network connection
on ethO.

Occasionally, amachine will be directly connected to two different IP networks on the same device. The
routing table will show that both networks are reachabl e through the same physical device. For more

on thistopic, see Section 2, “Multiple IP Networks on one Ethernet Segment”. Similarly, multi-homed
hosts will have routes for all locally connected networks through the locally-connected network inter-
face. For more on this sort of configuration, see Section 6, “Multihomed Hosts”.

This covers the classification of | P destinations which are available on alocally connected network. This
highlights the importance of an accurate netmask and network address. The next section will cover IP
ranges which are neither locally hosted nor fall in the range of the locally reachable networks. These
destinations must be reached through arouter.

3. Sending Packets Through a Gateway

2Theroute-n output can aso be produced with netstat -rn and is commonly used by admininstrators who rely on platform independent behav-
iour across heterogeneous Unix and Unix-like systems. This traditional routing table output uses conventional netmask notation to denote net-
work size.

3 Refer to the ip route section for afuller discussion of thislinux specific tool. The routing table output from ip route uses exclusively CIDR no-
tation.

32

IP Routing

By comparison to the total number of publicly accessible hosts on the Internet there is an almost in-
significant number of hosts inside any locally reachable network. This means that the majority of poten-
tial destinations are only available viaarouter.

Any machine which will accept and forward packets between two networks is arouter. Every router is at
least dual-homed; one interface connects to one network, and a second interface connects to another net-
work. Thisinterface is frequently an independent NIC, although it might be avirtual interface, such asa
VLAN interface. Machines connected to either network learn by arouting protocol or are statically con-
figured to pass traffic for the other network to the router.

Fortri st an, there aretwo different paths out of 192.168.99.0/24. One path has another leaf network,
192.168.98.0/24, and the other path has many networks, including the Internet. The routing table on

t ri st an should then contain two different routes out of the network. One destination 192.168.98.0/24
will be reachable through 192.168.99.1. So, if t r i st an has a packet with a destination IP addressin
the range of the branch office network, it will choose to send the packet directly toi sdn-r out er .

The default route is another way to say the route for destination 0/0. Thisis the most general possible
route. It isthe catch-all route. If no more specific route exists in arouting table, a default route will be
used. Many servers and workstations are connected to leaf networks with only one router, hence Exam-
ple 4.3, “Identifying the locally connected networks with route” shows avery common sort of routing
table. There'saroute for localhost, for the locally connected I P network, and a default route.

For Internet-connected hosts, the default route is customarily set to the IP of the locally reachable router
which has a path to the Internet. Each router in turn has a default gateway pointing to another Inter-
net-connected router until the packet is handed off to an Internet Service Provider's network.

4. Operating as a Router

Operating as a router allows a linux machine to accept packets on one interface and transmit them on an-
other. Thisisthe nature of arouter. The process of accepting and transmitting |1P packetsis known as
forwarding. IP forwarding is a requirement for many of the networking techniques identified here. State-
lessNAT and firewalling, transparent proxying and masquerading all require the support of 1P forward-
ing in order to function correctly.

The sysctl net /i pv4/i p_f or war d toggles the IP forwarding functionality on alinux box. Note that
setting this sysctl alters other routing-related sysctl entries, so it iswise to set thisfirst, and then alter
other entries. Frequently, an administrator will forget this smple and crucial detail when configuring a
new machine to operate as arouter only to be frustrated at the simple error.

The sysctl net /i pv4/ conf/ $DEV/ f or war d defaultsto the value of net / i pv4/i p_f orwar d,
but can be independently modified. In order to allow forwarding of packets between two interfaces
while prohibiting such behaviour on athird interface, this sysctl can be employed.

5. Route Selection

Crucial to the proper ability of hosts to exchange IP packets is the correct selection of aroute to the des-
tination. The rules for the selection of route path are traditionally made on a hop-by-hop basis 4 based
solely upon the destination address of the packet. Linux behaves as a conventional routing devicein this
way, but can also provide a more flexible capability. Routes can be chosen and prioritized based on oth-
er packet characteristics.

“ This document could stand to allude to MPLSi mplementations under linux, for those who want to look at traffic engineering and packet tagging
on backbones. Thisis certainly not in the scope of this chapter, and should be in a separate chapter, which covers devel oping technologies.

33

IP Routing

The route selection algorithm under linux has been generalized to enable the powerful latter scenario
without complicating the overwhelmingly common case of the former scenario.

5.1. The Common Case

The above sections on routing to alocal network and the default gateway expose the importance of des-
tination address for route selection. In this simplified model, the kernel need only know the destination
address of the packet, which it compares against the routing tables to determine the route by which to
send the packet.

The kernel searches for amatching entry for the destination first in the routing cache and then the main
routing table. In the case that the machine has recently transmitted a packet to the destination address,
the routing cache will contain an entry for the destination. The kernel will select the same route, and
transmit the packet accordingly.

If the linux machine has not recently transmitted a packet to this destination address, it will ook up the
destination in its routing table using a technique known longest prefix match °In practical terms, the
concept of longest prefix match means that the most specific route to the destination will be chosen.

The use of the longest prefix match allows routes for large networks to be overridden by more specific
host or network routes, as required in Example 1.10, “Removing a static network route and adding a sta-
tic host route”, for example. Conversely, it is this same property of longest prefix match which allows
routes to individual destinations to be aggregated into larger network addresses. Instead of entering in-
dividua routes for each host, large numbers of contiguous network addresses can be aggregated. Thisis
the realized promise of CIDR networking. See Section 1.3, “General 1P Networking Resources’ for fur-
ther details.

In the common case, route selection is based completely on the destination address. Conventional (as
opposed to policy-based) IP networking relies on only the destination address to select aroute for a
packet.

Because the magjority of linux systems have no need of policy based routing features, they use the con-
ventional routing technique of longest prefix match. While this meets the needs of alarge subset of linux
networking needs, there are unrealized policy routing featuresin a machine operating in this fashion.

5.2. The Whole Story

With the prevalence of low cost bandwidth, easily configured VPN tunnels, and increasing reliance on
networks, the technique of selecting a route based solely on the destination IP address range no longer
suffices for all situations. The discussion of the common case of route selection under linux neglects one
of the most powerful features in the linux P stack. Since kernel 2.2, linux has supported policy based
routing through the use of multiple routing tables and the routing policy database (RPDB). Together,
they alow anetwork administrator to configure a machine select different routing tables and routes
based on a number of criteria.

Selectors available for use in policy-based routing are attributes of a packet passing through the linux
routing code. The source address of a packet, the ToS flags, an fwmark (a mark carried through the ker-
nel in the data structure representing the packet), and the interface name on which the packet was re-
ceived are attributes which can be used as selectors. By selecting a routing table based on packet attrib-
utes, an administrator can have granular control over the network path of any packet.

With this knowledge of the RPDB and multiple routing tables, let's revisit in detail the method by which
the kernel selects the proper route for a packet. Understanding the series of steps the kernel takes for

5 Refer to RFC 3222 [http://www.isi.edu/in-notes/rfc3222.txt] for further details.

34

http://www.isi.edu/in-notes/rfc3222.txt
http://www.isi.edu/in-notes/rfc3222.txt

IP Routing

route selection should demystify advanced routing. In fact, advanced routing could more accurately be
called policy-based networking.

When determining the route by which to send a packet, the kernel always consults the routing cache
first. The routing cache is a hash table used for quick access to recently used routes. If the kernel finds
an entry in the routing cache, the corresponding entry will be used. If there is no entry in the routing
cache, the kernel begins the process of route selection. For details on the method of matching aroutein
the routing cache, see Section 7, “Routing Cache’.

The kernel begins iterating by priority through the routing policy database. For each matching entry in
the RPDB, the kernel will try to find a matching route to the destination | P address in the specified rout-
ing table using the aforementioned longest prefix match selection algorithm. When a matching desti-
nation is found, the kernel will select the matching route, and forward the packet. If no matching entry
isfound in the specified routing table, the kernel will pass to the next rule in the RPDB, until it finds a
match or falls through the end of the RPDB and all consulted routing tables.

Here is a snippet of python-esgue pseudocode to illustrate the kernel's route selection process again.
Each of the lookups below occurs in kernel hash tables which are accessible to the user through the use
of variousiproute2 tools.

Example 4.4. Routing Selection Algorithm in Pseudo-code

i f packet.rout eCacheLookupKey in routeCache
route = routeCache[packet.routeCacheLookupKey]
el se
for rule in rpdb :
i f packet.rpdbLookupKey in rule
rout eTabl e = rul e[| ookupTabl e]
i f packet.rout eLookupKey in routeTable :
route = route_table[packet.routelLookup_key]

This pseudocode provides some explanation of the decisions required to find aroute. The final piece of
information required to understand the decision making process is the lookup process for each of the
three hash table lookups. In Table 4.1, “Keys used for hash table lookups during route selection”, each
key islisted in order of importance. Optional keys are listed in italics and represent keys that will be
matched if they are present.

Table 4.1. Keysused for hash table lookups during route selection

route cache RPDB routetable
destination source destination
source destination ToS
ToS ToS scope
fwmark fwmark oif
iif iif

The route cache (also the forwarding information base) can be displayed using ip route show cache.

The routing policy database (RPDB) can be manipulated with theip rule utility. Individua route tables
can be manipulated and displayed with the ip route command line tool.

35

IP Routing

Example 4.5. Listing the Routing Policy Database (RPDB)

[root @sol de]# ip rul e show
0: fromall |ookup |ocal
32766: fromall | ookup main
32767: fromall |ookup 253

Observation of the output of ip rule show in Example 4.5, “Listing the Routing Policy Database
(RPDB)” on abox whose RPDB has not been changed should reveal a high priority rule, rule 0. This
rule, created at RPDB initialization, instructs the kernel to try to find a match for the destination in the
local routing table. If there is no match for the packet in the local routing table, then, per rule 32766, the
kernel will perform aroute lookup in the main routing table. Normally, the main routing table will con-
tain a default route if not amore specific route. Failing a route lookup in the main routing table the final
rule (32767) instructs the kernel to perform a route lookup in table 253.

A common mistake when working with multiple routing tables involves forgetting about the stateless-
ness of |P routing. This manifests when the user configuring the policy routing machine accounts for
outbound packets (viaf wrar k, or ip rule selectors), but forgets to account for the return packets.

5.3. Summary

For more ideas on how to use policy routing, how to work with multiple routing tables, and how to trou-
bleshoot, see Section 3, “Using the Routing Policy Database and Multiple Routing Tables’.

Yeah. That'sit. So there.

6. Source Address Selection

The selection of the correct source address is key to correct communication between hosts with multiple
IP addresses. If ahost chooses an address from a private network to communicate with a public Internet
hogt, it islikely that the return half of the communication will never arrive.

Theinitia source address for an outbound packet is chosen in according to the following series of rules.
The application can request a particular IP 6, the kernel will usethesr ¢ hint from the chosen route path
7 or, lacki ng this hint, the kernel will choose the first address configured on the interface which fallsin
the same network as the destination address or the nexthop router.

The following list recapitul ates the manner by which the kernel determines what the source address of
an outbound packet.

» The application is aready using the socket, in which case, the source address has been chosen. Also,
the application can specifically request a particular address (not necessarily alocally hosted IP; see
Section 7, “Binding to Non-local Addresses”) using the bi nd call.

6 Many networking applications accept a command line option to prefer a particular source address. The call to select a particular IP is known
asbi nd() , so the command line option frequently contains the word bind, e.g., - - bi nd- addr ess. Examples of command line tools allow-
ing specification of the source address are nc -s $BINDADDR $DEST $PORT or socat - TCP4:3REMOTEHOST:$REMOTEPORT ,bind=
$BINDADDR.

7 In this case, the route has a ready been selected (see Section 5, “ Route Selection”) and the chosen route entry includes a hint for preferred
source address on outbound packets specifically for this purpose. For examples on configuring the routing tables to include this parameter, see
Example D.19, “Using sr ¢ in arouting command with route add”.

36

IP Routing

e Thekernel performs aroute lookup and finds an outbound route for the destination. If the route con-
tainsthe sr ¢ parameter, the kernel selects this I P address for the outbound packet.

Also refer to this excerpt [http://linux-ip.net/gl/ip-cref/nodel55.html] from the iproute2 command refer-
ence.

7. Routing Cache

Therouting cache is also known as the forwarding information base (FIB). This term may be familiar to
users of other routing systems.

The routing cache stores recently used routing entriesin afast and convenient hash lookup table, and
is consulted before the routing tables. If the kernel finds a matching entry during route cache lookup, it
will forward the packet immediately and stop traversing the routing tables.

Because the routing cache is maintained by the kernel separately from the routing tables, manipulating
the routing tables may not have an immediate effect on the kernel's choice of path for a given packet. To
avoid a non-deterministic lag between the time that a new route is entered into the kernel routing tables
and the time that a new lookup in those route tables is performed, use ip route flush cache. Once the
route cache has been emptied, new route lookups (if not by a packet, then manually with ip route get)
will result in a new lookup to the kernel routing tables.

The following isalisting of the hash lookup keys in the routing cache and a description of each key.
Compare thislist with the elementsidentified in Table 4.1, “Keys used for hash table lookups during
route selection”.

dst, Destination Address
The destination IP address of the packet. This is the destination address
on the packet at the time of the route lookup. The addressis a host ad-
dress. All 32 bits are significant during this lookup.

src, Source Address
The source IP address of the packet. Thisis the source address on the
packet at the time of the route lookup. The addressis a host address. All
32 bits are significant during this lookup.

tos, Type of Service
The ToS marking on the packet. If there is no ToS marking on the packet
(tos == 0), thislookup key is unused. If thereis a ToS marking, the ker-
nel will search for a match with this ToS value. If no matching (dst, src,
tos) isfound, the kernel will continue the search for aroute by traversing
the RPDB.

fwmark
The mark on a packet added administratively by the packet filtering en-
gine (ipchains or iptables). Thismark is not part of the physical 1P pack-
et, and only exists as part of the data structure held in memory on the
routing device to represent the | P packet. If there is no fwmark on the
packet, thislookup key is unused. When present, the kernel will search
for amatching (dst, src, tos?, fwmark) entry. If no matching entry is

37

http://linux-ip.net/gl/ip-cref/node155.html
http://linux-ip.net/gl/ip-cref/node155.html

IP Routing

found, the kernel will continue the search for aroute by traversing the
RPDB.

iif, inbound interface
The name of the interface on which the packet arrived.

The following attributes may be stored for each entry in the routing cache.

cwnd, FIXME Window
FIXME. A) | don't know what it is. B) | don't know how to de-

scribeit.

advmss, Advertised Maximum Seg-
ment Size

sre, (Preferred Local) Source Ad-
dress

mtu, Maximum Transmission Unit
rtt, Round Trip Time

rttvar, Round Trip Time Variation
FIXME. Gotta find some references to this, too.

age
users
used

Coallectively the hash keys uniquely identify routes in the forwarding information base (routing cache)
and each entry provides attributes of the route.

8. Routing Tables

Linux kernel 2.2 and 2.4 support multiple routing tables 8. Beyond the two commonly used routing ta-
bles (the local and main routing tables), the kernel supports up to 252 additional routing tables.

The multiple routing table system provides a flexible infrastructure on top of which to implement pol-
icy routing. By allowing multiple traditional routing tables (keyed primarily to destination address) to
be combined with the routing policy database (RPDB) (keyed primarily to source address), the kernel
supports awell-known and well-understood interface while simultaneously expanding and extending its
routing capabilities. Each routing table still operates in the traditional and expected fashion. Linux sim-
ply alows you to choose from a number of routing tables, and to traverse routing tablesin a user-defin-
able sequence until a matching route is found.

Any given routing table can contain an arbitrary number of entries, each of which is keyed on the fol-
lowing characteristics (cf. Table 4.1, “Keys used for hash table lookups during route selection”)

8 The kernel must be compiled with the option CONFI G_| P_MJULTI PLE_TABLES=y. Thisis common in vendor and stock kernels, both 2.2
and 2.4.

38

IP Routing

destination address; a network or host address (primary key)

tos; Type of Service
* scope
 output interface

For practical purposes, this means that (even) a single routing table can contain multiple routes to the
same destination if the ToS differs on each route or if the route applies to a different interface °.

Kernels supporting multiple routing tables refer to routing tables by unique integer slots between 0 and
255 10, The two routi ng tables normally employed are table 255, the | ocal routing table, and table
254, the mai n routing table. For examples of using multiple routing tables, see Chapter 9, Advanced
IP Management, in particular, Example 10.1, “Multiple Outbound Internet links, part I; ip route”, Ex-
ample 10.3, “Multiple Outbound Internet links, part 111; ip rule” and Example 10.4, “Multiple Internet
links, inbound traffic; using iproute2 only ”. Also be sure to read Section 3, “Using the Routing Policy
Database and Multiple Routing Tables” and Section 9, “Routing Policy Database (RPDB)".

Theip route and ip rule commands have built in support for the special tablesmai n and | ocal . Any
other routing tables can be referred to by number or an administratively maintained mapping file, /
etc/iproute2/rt_tables.

The format of thisfileis extraordinarily simple. Each line represents one mapping of an arbitrary string
to an integer. Comments are allowed.

Example 4.6. Typical content of / et ¢/ i proute2/rt _tabl es

#

reserved val ues

#

255 | ocal (1]
254 mai n (2]
253 def aul t (3)
0 unspec (4
#

| ocal

#

1 inr.ruhep ©

© Thel ocal tableisaspecial routing table maintained by the kernel. Users can remove entries
from the local routing table at their own risk. Users cannot add entries to the local routing table.
Thefile/ et c/i proute2/rt_tabl es need not exist, asthe iproute? tools have a hard-coded
entry for thel ocal table.

® Themain routing table is the table operated upon by route and, when not otherwise specified, by

ip route. Thefile/ et c/i prout e2/rt _t abl es need not exist, asthe iproute2 tools have a

hard-coded entry for the mai n table.

Thedef aul t routing tableis another special routing table, but WHY isit special!?!

Operating on the unspec routing table appears to operate on all routing tables simultaneously. Is

this true!? What does that imply?

(3]
o

o1 somebody has used scope or oif as additional keysin arouting table, and has an example, I'd love to seeit, for possible inclusion in this docu-
mentation.
©Can anybody describe to me what isin table 0? It looks almost like an aggregation of the routing entriesin routing tables 254 and 255.

39

IP Routing

©® Thisisan exampleindicating that table 1 is known by the name inr.runep. Any referencestot a-
bl e inr.ruhepinanipruleorip routewill substitue the value 1 for the word inr.ruhep.

The routing table manipulated by the conventiona route command isthe mai n routing table. Addition-
ally, the use of both ip address and ifconfig will cause the kernel to alter the local routing table (and
usually the main routing table). For further documentation on how to manipulate the other routing ta-
bles, see the command description of ip route.

8.1. Routing Table Entries (Routes)

Each routing table can contain an arbitrary number of route entries. Aside from the local routing table,
which is maintained by the kernel, and the main routing table which is partially maintained by the ker-
nel, al routing tables are controlled by the administrator or routing software. All routes on a machine
can be changed or removed %,

Each of the following route typesis available for use with the ip route command. Each route type caus-
esaparticular sort of behaviour, which isidentified in the textual description. Compare the route types
described below with the rule types available for usein the RPDB.

unicast
A unicast route is the most common route in routing tables. Thisisatypical routeto

a destination network address, which describes the path to the destination. Even com-
plex routes, such as nexthop routes are considered unicast routes. If no route typeis
specified on the command line, the route is assumed to be a unicast route.

Example 4.7. unicast route types

ip route add unicast 192.168.0.0/24 via 192. 168. 100. 5
ip route add default via 193.7.255.1

ip route add unicast default via 206.59.29.193

ip route add 10.40.0.0/16 via 10.72.75. 254

broadcast
Thisroute type is used for link layer devices (such as Ethernet cards) which support

the notion of abroadcast address. This route typeis used only in the local routing ta-
ble 2 and is typically handled by the kernel.

Example 4.8. broadcast route types

ip route add table [ocal broadcast 10.10.20.255 dev ethO proto kernel
ip route add table |ocal broadcast 192.168.43.31 dev eth4 proto kernel

local
The kernel will add entries into the local routing table when I P addresses are added to

an interface. This means that the IPs are locally hosted IPs 13,

1 once again, | recommend caution when altering the local routing table. Removing local route types from the local routing table can break net-
working in strange and wonderful ways.

2 0K, I'm not absol utely sure you can't use the broadcast route in other routing tables, but | believe you can't. Testing forthcoming...

23 1bid. I'm not sure that local route types can be used in any routing table other than the local routing table. Testing forthcoming...

40

IP Routing

Example 4.9. local route types

ip route add table local |ocal 10.10.20.64 dev ethO proto kernel scops
ip route add table |ocal |ocal 192.168.43.12 dev eth4 proto kernel sc

nat
Thisroute entry is added by the kernel in the local routing table, when the user at-
temptsto configure stateless NAT. See Section 3, “ Stateless NAT with iproute2” for
afuller discussion of network address translation in general. 4.

Example 4.10. nat route types

ip route add nat 193.7.255.184 via 172.16. 82. 184
ip route add nat 10.40.0.0/16 via 172.40.0.0

unreachable
When arequest for arouting decision returns a destination with an unreachable route
type, an ICMP unreachable is generated and returned to the source address.

Example 4.11. unreachableroute types

ip route add unreachable 172.16. 82. 184
ip route add unreachabl e 192. 168. 14. 0/ 26
ip route add unreachabl e 209. 10. 26. 51

prohibit
When areguest for arouting decision returns a destination with a prohibit route type,
the kernel generates an ICMP prohibited to return to the source address.

Example 4.12. prohibit route types

ip route add prohibit 10.21.82. 157
ip route add prohibit 172.28.113. 0/ 28
ip route add prohibit 209.10. 26.51

blackhole
A packet matching a route with the route type blackhole is discarded. No ICMP is
sent and no packet is forwarded.

Example 4.13. blackhole route types

ip route add bl ackhol e def aul t
ip route add bl ackhol e 202. 143. 170. 0/ 24

14 Ibid. nat route types might be ineffectual outside the local routing table. Testing forthcoming...

41

IP Routing

ip route add bl ackhol e 64. 65. 64. 0/ 18

throw
The throw route type is a convenient route type which causes aroute lookup in a
routing table to fail, returning the routing selection process to the RPDB. Thisis use-
ful when there are additional routing tables. Note that there is an implicit throw if no
default route exists in arouting table, so the route created by the first command in the
example is superfluous, athough legal.

Example 4.14. throw route types

ip route add throw def ault
ip route add throw 10. 79. 0. 0/ 16
ip route add throw 172.16.0.0/12

The power of these route types when combined with the routing policy database can hardly be understat-
ed. All of these route types can be used without the RPDB, although the throw route doesn't make much
sense outside of a multiple routing table installation.

8.2. The Local Routing Table

Thelocal routing table is maintained by the kernel. Normally, the local routing table should not be ma-
nipulated, but it is available for viewing. In Example D.12, “Viewing the local routing table with ip
route show tablelocal”, you'll seetwo of the common uses of the local routing table. The first common
use is the specification of broadcast address, necessary only for link layers which support broadcast ad-
dressing. The second common type of entry in alocal routing table is aroute to alocally hosted IP.

Theroute types found in the local routing table arel ocal , nat and br oadcast . These route types
are not relevant in other routing tables, and other route types cannot be used in the local routing table.

If the the machine has several |P addresses on one Ethernet interface, there will be aroute to each local -
ly hosted IP in the local routing table. Thisisanormal side effect of bringing up an IP address on an in-
terface under linux. Maintenance of the broadcast and local routes in the local routing table can only be
done by the kernel.

Example 4.15. Kernel maintenance of thel ocal routingtable

[root @eal -server]# ip address show dev et hl
6: ethl: <BROADCAST, MULTI CAST, UP> mtu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:e8:1le:fc brd ff:ff:ff:ff:ff:ff
i net 10.10.20.89/24 brd 10.10. 20. 255 scope gl obal ethl
[root @eal -server]# ip route show dev ethl
10. 10. 20.0/24 proto kernel scope link src 10.10.20.89
[root @eal -server]# ip route show dev ethl table | oca
br oadcast 10.10.20.0 proto kernel scope link src 10.10.20.89
br oadcast 10.10.20.255 proto kernel scope link src 10.10.20.89
| ocal 10.10.20.89 proto kernel scope host src 10.10.20.89

42

IP Routing

[root @eal -server]# i p address add 192. 168. 254. 254/ 24 brd + dev ethl
[root @eal -server]# ip address show dev ethl
6: ethl: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:e8:1e:fc brd ff:ff:ff:ff:ff:ff
i net 10.10.20.89/24 brd 10.10. 20. 255 scope gl obal ethl
i net 192.168. 254. 254/ 24 brd 192. 168. 254. 255 scope gl obal ethl
[root @eal -server]# ip route show dev ethl
10. 10.20.0/ 24 proto kernel scope link src 10.10.20.89
192. 168. 254. 0/ 24 proto kernel scope link src 192.168.254.254
[root @eal -server]# ip route show dev ethl table | oca
br oadcast 10.10.20.0 proto kernel scope link src 10.10.20.89
br oadcast 192.168.254.0 proto kernel scope link src 192.168.254. 254
br oadcast 10.10.20.255 proto kernel scope link src 10.10.20.89
| ocal 192. 168. 254. 254 proto kernel scope host src 192. 168. 254. 254
| ocal 10.10.20.89 proto kernel scope host src 10.10.20.89
br oadcast 192.168. 254. 255 proto kernel scope link src 192.168. 254. 254

Notein Example 4.15, “Kernel maintenance of thel ocal routing table”, that the kernel adds not on-
ly the route for the locally connected network in the mai n routing table, but also the three required spe-
cial addressesinthel ocal routing table. Any |P addresses which are locally hosted on the box will
havel ocal entriesinthel ocal table. The network address and broadcast address are both entered
asbr oadcast type addresses on the interface to which they have been bound. Conceptually, thereis
significance to the distinction between a network and broadcast address, but practically, they are treated
analogously, by other networking gear as well asthe linux kernel.

There is one other type of route which commonly endsupinthel ocal routing table. When using
iproute2 NAT, there will be entriesin the local routing table for each network address trandlation. Re-
fer to Example D.21, “ Creating a NAT route for asingle IP with ip route add nat” and Example D.22,
“Creating aNAT route for an entire network with ip route add nat” for example output.

8.3. The Main Routing Table

The mai n routing table is the routing table most people think of when considering alinux routing ta-
ble. When no table is specified to an ip route command, the kernel assumes the mai n routing table. The
route command only manipulates the mai n routing table.

Similarly tothel ocal table, the mai n table is populated automatically by the kernel when new inter-
faces are brought up with 1P addresses. Consult the mai n routing table before and after i p addr ess
add 192. 168. 254. 254/ 24 brd + dev et hlinExample4.15, “Kernel maintenance of the

| ocal routing table” for a concrete example of this kernel behaviour. Also, visit this summary of side
effects of interface definition and activation with ifconfig or ip address.

9. Routing Policy Database (RPDB)

The routing policy database (RPDB) controls the order in which the kernel searches through the routing
tables. Each rule has a priority, and rules are examined sequentially from rule O through rule 32767.

When anew packet arrives for routing (assuming the routing cache is empty), the kernel begins at the
highest priority rule in the RPDB--rule 0. The kernel iterates over each rule in turn until the packet to be
routed matches arule. When this happens the kernel follows the instructionsin that rule. Typicaly, this
causes the kernel to perform aroute lookup in a specified routing table. If amatching route isfound in

43

IP Routing

the routing table, the kernel uses that route. If no such route is found, the kernel returnsto traverse the
RPDB again, until every option has been exhausted.

The priority-based rule system provides a flexible way to define routes while taking advantage of the
traditional routing table concept. For a complete picture of the entire route selection process including
the RPDB, see the section on routing selection.

There are anumber of different rule types available for use in the routing policy database. Theserule
types have a striking similarity to the route types available for route entries.

unicast

nat

unreachable

prohibit

A unicast rule entry is the most common rule type. This rule type simple causes the
kernel to refer to the specified routing table in the search for aroute. If no ruletypeis
specified on the command line, the rule is assumed to be a unicast rule.

Example 4.16. unicast ruletype
ip rule add unicast from 192. 168. 100. 17 table 5

ip rule add unicast iif eth7 table 5
ip rule add unicast fwrark 4 table 4

The nat rule type is required for correct operation of statelessNAT. Thisruleistyp-
ically coupled with a corresponding nat route entry. The RPDB nat entry causes the
kernel to rewrite the source address of an outbound packet. See Section 3, “ Stateless
NAT with iproute2” for afuller discussion of network address translation in general.
Example 4.17. nat rule type

ip rule add nat 193.7.255.184 from 172. 16. 82. 184
ip rule add nat 10.40.0.0 from 172. 40. 0.0/ 16

Any route lookup matching a rule entry with an unreachable rule type will cause the
kernel to generate an ICMP unreachable to the source address of the packet.

Example 4.18. unreachableruletype

ip rule add unreachable iif eth2 tos 0xcO
ip rule add unreachable iif wanO fwrark 5
ip rule add unreachabl e from 192. 168. 7. 0/ 25

Any route lookup matching arule entry with a prohibit rule type will cause the kernel
to generate an ICMP prohibited to the source address of the packet.

Example 4.19. prohibit rule type

ip rule add prohibit from 209. 10. 26. 51

IP Routing

ip rule add prohibit to 64.65.64.0/18
ip rule add prohibit fwrark 7

blackhole
While traversing the RPDB, any route |lookup which matches a rule with the black-
hole rule type will cause the packet to be dropped. No ICMP will be sent and no
packet will be forwarded.

Example 4.20. blackholeruletype

ip rule add bl ackhol e from 209. 10. 26. 51
ip rule add bl ackhole from 172. 19. 40. 0/ 24
ip rule add bl ackhole to 10.182.17. 64/ 28

The routing policy database provides the core of functionality around which the policy routing and ad-
vanced routing features can be built.

10. ICMP and Routing

ICMP isavery important part of the communication between hosts on | P networks. Used by routers and
endpoints (clients and servers) ICMP communicates error conditions in networks and provides a means
for endpoints to receive information about a network path or requested connection.

One of the commonest uses of ICMP by the administrator of a network is the use of ping to detect the
state of a machine in the network. There are other types of ICMP which are used for other inter-com-
puter communication. One other common type of ICMP isthe ICMP returned by arouter or host which
is not accepting connections. Essentially, the host returns the ICMP as a polite method of saying “Go

away.”.

10.1. MTU, MSS, and ICMP

One important use of ICMP, which is completely transparent to most users (and indeed many admins),
isthe use of ICMP to discover the Path Maximum Transmission Unit (PMTU). By discovering the Path
MTU and transmitting packets with thisthe MTU, ahost can minimize the delay of traffic due to frag-
mentation, and (theoretically) attain a more even rate of data transmission. Because each destination
may have a different MTU due to different network paths, the MTU is a per route attribute stored in the
routing cache.

Path MTU can be quite easily broken if any single hop along the way blocks all ICMP. Be sure to allow
| CM P unreachabl e/fragmentation needed packets into and out of your network. Thiswill prevent you
from being one of the unclueful network admins who cause PMTU problems.

10.2. ICMP Redirects and Routing

An ICMP redirect isarouter's way of communicating that there is a better path out of this network or in-
to another one than the one the host had chosen. In the example network, t r i st an hasaroute to the
world through masg- gwand aroute to 192.168.98.0/24 through i sdn-rout er.Iftri st an sendsa
packet for 192.168.98.0/24 to mas g- gw, the optimal outcomeisfor masq- gwto suggest with an ICMP
redirect that t r i st an send such packetsviai sdn-r out er instead.

45

IP Routing

By this method, hosts can learn what networks are reachable through which routers on the local network
segment. ICMP redirect messages, however, are easy to forge, and were (at one time) used to subvert
poorly configured machines. While thisisinfrequently a problem on the Internet today, it's still good
practice to ignore ICMP redirect messages from public networks. Create static routes where necessary
on private and public networks to prevent ICMP redirect messages from being generated on your net-
work.

To examine an example of ICMP redirect in action, we simply need to send a packet directly from
tri st antonor gan. We assume that masq- gw has aroute to 192.168.98.0/24 via 192.168.99.1
(isdn-router),thattri st an hasno such route.

Example 4.21. ICMP Redirect on the Wire

[root @ristan]# echo test | nc 192.168.98.82 22

[root @ristan]# tcpdunp -nneqti ethO

0: 80:c8:f8:4a:51 0:80:c8:f8:5c:71 74: 192.168.99. 35. 54510 > 192. 168. 98. 82. 22: tcp
0:80:c8:f8:5c: 71 0:80:c8:f8:4a:51 102: 192.168.99.254 > 192.168.99.35: icnp: redir
0:80:c8:f8:5c: 71 0:c0: 7b: 45: 6a: 39 74: 192. 168. 99. 35. 54510 > 192. 168. 98. 82. 22: tcp

There'sagreat deal of information above, so |et's examine the important parts. We have the first three
packets which passed by our NIC as aresult of this attempt to establish a session. First, we see a packet
fromt ri st an bound for mor gan witht ri st an's source MAC and masq- gws destination MAC.
Because masq- gwist ri st an'sdefault gateway, t ri st an will send all packets there.

The next packet isthe ICMP redirect, informing t r i st an of abetter route. It includes several pieces of
information. Implicitly, the source IP indicates what router is suggesting the alternate route, and the con-
tents specify what the intended destination was, and what the better route is. Note that nasq- gw sug-
gestsusing 192.168.99.1 (i sdn- r out er) asthe gateway for this destination.

Thefinal packet is part of the intended session, but has the MAC address of masq- gwon it. masq- gw
has (courteously) informed us that we should not use it as aroute for the intended destination, but has
also (courteously) forwarded the packet as we had requested. In this small network, it is acceptable to
allow ICMP redirect messages, athough these should always be dropped at network borders, both in-
bound and outbound.

So, in summary, ICMP redirect messages are not intrinsically dangerous or problematic, but they
shouldn't exist in well-maintained networks. If you happen to see them growing in the shadows of your
network, some careful observation should show you what hosts are affected and which routing tables
could use some attention.

15 Consult Table A2, Example Network; Host Addressing” for details on the IP and MAC addresses of the hosts referred to in this example.

46

Chapter 5. Network Address
Translation (NAT)

Network Address Tranglation (NAT) is adeceptively simple concept. NAT is the technique of rewriting
addresses on a packet as it passes through arouting device. There are far reaching ramifications on net-
work design and protocol compatibility wherever NAT is used.

This chapter will introduce two types of NAT available under linux. One, full NAT or stateless NAT,
isavailable under kernel 2.2 and kernel 2.4 viathe iproute2 userspace interface. Available only un-
der kernel 2.4, destination NAT (DNAT) is an important derivative of full NAT. DNAT configuration
from userspace is accomplished via the iptables utility. The experienced network administrator is prob-
ably puzzling about absent referencesto source NAT (SNAT) and masguerading. These prominent and
prevalent uses of NAT are covered in Chapter 6, Masquerading and Source Network Address Transla-
tion, although many concepts involved in the special purpose SNAT and masquerading will be intro-
duced in this chapter.

Network address trandation is known by a number of namesin the networking world: full NAT, one-
to-one NAT and inbound NAT. As used in this chapter and throughout this documentation, NAT, when
unqualified, will refer to full network address translation or one-to-one NAT. NAT techniques derived
from full NAT, such as destination or source NAT, will be described as DNAT (destination NAT) and
SNAT (source NAT).

Michael Hasenstein's seminal paper on network address trandation is available courtesy of SuSe Linux
AG here [http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html].

1. Rationale for and Introduction to NAT

Network address trandation (NAT) is a technique of transparently mapping an IP address or range to an-
other IP address or range. Any routing device situated between two endpoints can perform this transfor-
mation of the packet. Network designers must however take one key element under consideration when
laying out a network with NAT in mind. The router(s) performing NAT must have an opportunity to
rewrite the packet upon entry to the network and upon exit from the network 1

Because network address translation manipulates the addressing of a packet, the NAT transformation be-
comes a passive but critical part of the conversation between hosts exchanging packets. NAT is by ne-
cessity transparent to the application layer endpoints and operates on any type of 1P packet. There are
some application and even network layer protocols which will break as aresult of this rewriting. Consult
Section 2, “Application Layer Protocols with Embedded Network Information” for a discussion of these
Cases.

Here are afew common reasons to consider NAT along with potential NAT solution candidates shown
in parentheses.

» Publicly accessible services need to be provided on registered Internet |Ps which change or might
change. NAT allows the separation of internal 1P addressing schemes from the public IP space, easing
the burden of changing internal addressing or external IPs. (NAT, DNAT, PAT with DNAT PAT from
user space)

Yifus ng stateless NAT, the inbound and outbound translations can occur on more than one device, provided that all of the devices are perform-
ing the same trandlation.

47

http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html
http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html

Network Address Translation (NAT)

» An application requires inbound and outbound connections. In this case SNAT/masqguerading will
not suffice. See also Section 3, “Where Masquerading and SNAT Break”. (NAT, SNAT and applica-
tion-aware connection tracking)

» The network numbering scheme is changing. Clever use of NAT allows reachability of serviceson
both I P addresses or | P address ranges during the network numbering migration. (NAT, DNAT)

» Two networks share the same IP addressing space and need to exchange packets. Using network ad-
dresstranglation to publish NAT network spaces with different numbering schemes would allow each
network to retain the addressing scheme while accessing the other network. (NAT, DNAT, SNAT)

These are the commonest reasons to consider and implement NAT. Other niche applications of NAT,
notably as part of load balancing systems, exist although this chapter will concentrate on the use of NAT
to hide, isolate or renumber networks. It will also cover inbound connections, leaving the discussion of
many-to-one NAT, SNAT and masquerading for Chapter 6, Masguerading and Source Network Address
Trandation.

One motivator for deploying NAT in a network is the benefit of virtualizing the network. By isolating
services provided in one network from changes in other networks, the effects of such changes can be
minimized. The disadvantage of virtualizing the network in thisway is the increased reliance on the
NAT device.

Providing inbound services via NAT can be accomplished in severa different ways. Two common tech-
niques areto use iproute2 NAT and netfilter DNAT. Less common (and possibly less desirable) one can
use port redirection tools. Depending on which tool is employed, different characteristics of a packet can
trigger the address transformation.

The simplest form of NAT under linux isiproute2 NAT. Thistype of NAT requires two matching com-
mands, one to cause the kernel to rewrite theinbound packets (i p route add nat $NATIP via
$REAL) and one to rewrite the outbound packets (i p rul e add from $REAL nat S$NATI P).
The router configured in this fashion will retain no state for connections. It will simply transform any
packets passing through. By contrast, netfilter is capable of retaining state on connections passing
through the router and selecting packets more granularly than is possible with only iproute2 tools.

Before the advent of the netfilter engine in the linux kernel, there were several tools available to admin-
ister NAT, DNAT and PAT. These tools were not included in many distributions and weren't adopted
broadly in the community. Although you may find references to ipmasgadm, ipnatadm and ippor tfw
across the Internet in older documentation, these tools have been superseded in functionality and wide-
spread deployment by the netfilter engine and its userspace partner, iptables.

The netfilter engine provides a more flexible language for selection of packets to be transformed than
that provided by the iproute2 suite and kernel routing functionality. Additionally, any NAT services
provided by the netfilter engine come with the labor-saving and resource-consuming connection tracking
mechanism. DNAT translates the address on an inbound packet and creates an entry in the connection
tracking state table. For even modest machines, the connection tracking resource consumption should
not be problematic.

Netfilter DNAT allows the user to select packets based on characteristics such as destination port. This
blurs the distinction between network address translation and port address translation. NAT always
transforms the layer 3 contents of a packet. Port redirection operates at layer 4. From a practical perspec-
tive, thereislittle difference between a port redirection and a netfilter DNAT which has selected asingle
port. The manner in which the packet and contents are retransmitted, however, is tremendously different.

One other less common technique for furnishing inbound servicesis the use of port redirection. Al-
though there are higher layer tools which can perform transparent application layer proxying (e.g. Squid
[http://Iwww.squid-cache.org/]), these are outside the scope of this documentation.

48

http://www.squid-cache.org/
http://www.squid-cache.org/

Network Address Translation (NAT)

There are anumber of IP addresses involved in any NAT transformations or connection states. The fol-
lowing list identifies these names and the convention used to describe each | P address. Beware that

the prevalance of NAT to publish services on the Internet via public | P addresses has lead to the serv-
er/client lingo common in discussions of NAT.

server NAT IP, NAT ThelP address to which packets are addressed. This is the address on the pack-

IP et before the device performing NAT manipulatesit. Thisis frequently also de-
scribed as the public 1P, although any given application of NAT knows no dis-
tinction between public and private address ranges.

real IP, server IP, hid- The IP address after the NAT device has performed its transformation. Fre-
denIP, private IP, in- quently, thisis described as the private | P, although any given application of
ternal 1P NAT knows no distinction between public and private address ranges.

client 1P The source address of theinitial packet. The client IPin aNAT transformation
does not change; this IPis the source | P address on any inbound packets both
before and after the tranglation. It is also the destination address on the out-
bound packet.

The above terms will be used below and in general discussions of NAT.

2. Application Layer Protocols with Embedded
Network Information

Network address trandation is beautifully invisible when it works, but has adverse effects on some pro-
tocols. Some network applications, e.g., FTP, SNMP, H323, LDAP, IRC, make use of embedded IP in-
formation in the application layer protocol or data stream. Since the 2.0.x kernel series (which is not
covered here), linux has supported modules which inspect and manipulate packet contents on particular
types of packets when used with NAT or masguerading.

FTP isthe classic example. Within the FTP control channel (usually established to destination port
tcp/21) the client and the server exchange | P address and port information. If the network address trans-
lation device doesn't manipulate this data, the FTP server will not be able to contact the client to provide
the data.

Passive mode FTP provides the possibility for a network layer which requires only outbound TCP con-
nections. Thisresultsin amore NAT friendly and firewall friendly protocol, because the connections are
initiated from the client.

Not only are there network applications which break when NAT isinvolved but also network layer pro-
tocols. IPSec is a standards-based network-layer security protocol commonly used in VPNs and IPv6
networks. There are many different ways to use |PSec, but, when used in AH (Authentication Header)
mode, NAT will break 1PSec functionality.

This underscores the importance of determining if NAT is the best solution for the problem. There are
kernel modulesto help handle many (though not all) of the application layer protocol when using NAT,
but some protocols, such as 1PSec in AH mode simply cannot be used with NAT.

3. Stateless NAT with iproute2

Stateless NAT, occasionally maligned as dumb NAT 2 isthe simplest form of NAT. It involves rewrit-
ing addresses passing through a routing device: inbound packets will undergo destination address rewrit-

2 Inthekernel codetree, stateless NAT, iproute2 NAT can belocated in thefilenet / i pv4/i p_nat _dunb. c. Eveninthekernel, it hasthis
reputation.

49

Network Address Translation (NAT)

ing and outbound packets will undergo source address rewriting. The iproute2 suite of tools provides
the two commands required to configure the kernel to perform stateless NAT. This section will cover
only stateless NAT, which can only be accomplished under linux with the iproute2 tools, although it
can be simulated with netfilter.

Creating an iproute2 NAT mapping has the side effect of causing the kernel to answer ARP requests for
the NAT IP. For more detail on ARP filtering, suppression and conditional ARP, see Chapter 2, Ether-
net. This can be considered, aternatively, a benefit or a misfeature of the kernel support for NAT. The
nat entry inthelocal routing table causes the kernel to reply for ARP requests to the NAT IP. Con-
versely, netfilter DNAT makes no ARP entry or provision for neighbor advertisement.

Whether or not it is using a packet filter, alinux machine can perform NAT using the iproute2 suite
of tools. This chapter will document the use of iproute2 tools for NAT with asimple example and an
explanation of the required commands, then an example of using NAT with the RPDB and using NAT
with a packet filter.

NAT with iproute? can be used in conjunction with the routing policy database (cf. RPDB) to support
conditional NAT, e.g. only perform NAT if the source | P falls within a certain range. See Section 3.3,
“Conditional StatelessNAT”.

3.1. Stateless NAT Packet Capture and Introduction

Assume that example company in example network wants to provide SMTP service on a public IP
(205.254.211.0/24) but plans to move to a different | P addressing space in the near future. Network ad-
dress tranglation can assist example company prepare for the move. The administrator will select an I[P
on the internal network (192.168.100.0/24) and configure the router to accept and translate packets for
the publicly reachable IP into the private I P.

Example5.1. StatelessNAT Packet Capture

[root @masq-gw] # tcpdunp -qgnn
19: 30: 17. 824853 ethl < 64.70.12.210.35131 > 205.254.211.17.25: tcp 0 (DF)
19: 30: 17. 824976 eth0 > 64.70.12.210.35131 > 192.168.100.17.25: tcp 0 (DF)
19: 30: 17. 825400 ethO < 192.168. 100. 17.25 > 64.70.12.210. 35131: tcp O (DF)
19: 30: 17. 825568 ethl > 205.254.211.17.25 > 64.70.12.210.35131: tcp 0 (DF)
O Thefirst packet comesin on ethl, masq- gws outside interface. The packet is addressed to the
NAT IP, 205.254.211.17 on tcp/25. Thisisthe |P/port pair on which which our service runs. This
is asnapshot of the packet before it has been handled by the NAT code.
® Thenextlineisthe"same" packet leaving eth0, masq- gwsinside interface, bound for the internal
network. The NAT code has substituted the real |P of the server, 192.168.100.17. Thisrewriting is
handled by thenat entry inthel ocal routingtable (i p r out e). Seeaso Example 5.2, “Basic
commands to create a stateless NAT”.
©® The SMTP server then sends areturn packet which arrives on ethO. This isthe packet before
the NAT code on nasq- gw has rewritten the outbound packet. This rewriting is handled by the
RPDB entry (i p rul e). Seeaso Example 5.2, “Basic commands to create a stateless NAT”.
O Finaly, the return packet is transmitted on ethl after having been rewritten. The source | P address
on the packet is now the public |P on which the service is published.

S\t you are having some difficulty understanding the output of tcpdump, please see the section on tcpdump.

50

000

Network Address Translation (NAT)

3.2. Stateless NAT Practicum

There are only afew commands which are required to enable stateless NAT on alinux routing device.
The commands below will configure the host masq- gw (see Section 1, “Example Network Map and
General Notes’ and Section 2, “ Example Network Addressing Charts’) as shown above in Example 5.1,
“ Stateless NAT Packet Capture”.

Example 5.2. Basic commandsto create a stateless NAT

[root @asqg-gw # i p route add nat 205.254.211.17 via 192.168.100.17 ©
[root @asqg-gwW # ip rule add nat 205.254.211.17 from 192.168. 100.17 ©
[root @esqg-gw # ip route flush cache (3]
[root @easqg-gwj# ip route show table all | grep “nat o
nat 205.254.211.17 via 192.168. 100.17 table |Iocal scope host

[root @easqg-gw # ip rule show (5]
0: fromall |ookup |ocal

32765: from 192. 168. 100. 17 | ookup mai n map-to 205. 254. 211. 17

32766: fromall |ookup main

32767: fromall |ookup 253

©® Thiscommand tells the kernel to perform network address translation on any packet bound
for 205.254.211.17. The parameter viatellsthe NAT code to rewrite the packet bound for
205.254.211.17 with the new destination address 192.168.100.17. Note, that this only handlesin-
bound packets; that is, packets whose destination address contains 205.254.211.17.

® Thiscommand enters the corresponding rule for the outbound traffic into the RPDB (kernel 2.2
and up). Thisrulewill cause the kernel rewrite any packet from 192.168.100.17 with the speci-
fied source address (205.254.211.17). Any packet originating from 192.168.100.17 which passes
through this router will trigger thisrule. In short, this command rewrites the source address of out-
bound packets so that they appear to originate from the NAT IP.

® Thekerndl maintains arouting cache to handle routing decisions more quickly (Section 7, “ Rout-
ing Cache”). After making changes to the routing tables on a system, it is good practice to empty
the routing cachewithi p route fl ush cache. Oncethecacheisempty, thekernel isguar-
anteed to consult the routing tables again instead of the routing cache.

00 Thesetwo commands allow the user to inspect the routing policy database and thel ocal routing
table to determine if the NAT routes and rules were added correctly.

3.3. Conditional Stateless NAT

NAT introduces a complexity to the network in which it is used because a service is reachable on a pub-
lic and aprivate IP. Usualy, thisis areasonable tradeoff or else stateless NAT would fail in the selec-
tion process. In the case that the linux routing device is connected to a public network and more than one
private network, there is more work to do.

Though the service is avail able to the public network on a public (NAT) IP, internal users may need to
connect to the private or internal IP.

Thisis accomplished by use of the routing policy database (RPDB), which allows conditional routing
based on packet characteristics. For a more complete explanation of the RPDB, see Section 9, “Routing
Policy Database (RPDB)”. The routing policy database can be manipulated with the ip rule command.
In order to successfully configure NAT, familiarity with the ip rule command is required.

51

Network Address Translation (NAT)

Example 5.3. Conditional StatelessNAT (not performing NAT for a specified
destination network)

[root @masqg-gwj# ip rule add to 192.168.99.0/24 from 192. 168. 100. 17
[root @masqg-gw] # ip route flush cache

[root @masqg-gw# ip rul e show

0: fromall | ookup |ocal

32764: from 192. 168.100. 17 to 192. 168. 99. 0/ 24 | ookup nai n

32765: from 192. 168.100. 17 | ookup nmai n map-to 205. 254. 211. 17
32766: fromall |ookup main

32767: fromall |ookup 253

Note that we now have an entry of higher priority in the RPDB for any packets returning

from 192.168.100.17 bound for 192.168.99.0/24. The rule tells the kernel to find the route for
192.168.99.0/24 (from 192.168.100.17) in the main routing table. This exception to the NAT mapping
of our public IPto our internal server will allow the hostsin our second internal network to reach the
host named i sol de on its private | P address.

Iftri stan weretoinitiate aconnectiontoi sol de now, the packet would return from 1P
192.168.100.17 instead of being rewritten from 205.254.211.17.

Now we have had success creating a NAT mapping with the iproute2 tools and we have successfully
made an exception for another internal network which is connected to our linux router. Now, supposing
we learn that we will be losing our 1P space next week, we are prepared to change our NAT rules with-
out readdressing our server network.

Naturally, you may not wish to create these rules manually every time you want to use NAT on every
device. A standard SysV initialization script and configuration file can ease the burden of managing a
number of NAT IPs on your system.

4. Stateless NAT and Packet Filtering

Because NAT rewrites the packet as it passes through the I P stack, packet filtering can become complex.
With attentiveness to the addressing of the packet at each stage in its journey through the packet filtering
code, you can ease the burden of writing a packet filter.

All of the below requirements can be deduced from an understanding of NAT and the path a pack-

et takes through the kernel. Consult aso the ipchains packet path [http://www.tldp.org/HOW-
TO/IPCHAINS-HOWTO-4.html#ss4.1] asillustrated in the ipchains HOWTO [http://www.tldp.org/
HOWTO/IPCHAINS-HOWTO.html] to understand the packet path when using ipchains. Keep in mind
when viewing the ASCI| diagram that stateless NAT will always occur in the routing stage. Also consult
the kernel packet traveling diagram [http://docum.org/stef.coene/qos’kptd/] for a good picture of a2.4
kernel packet path.

Table 5.1, “Filtering aniproute2 NAT packet with ipchains’ identifies the | P addresses on a packet tra-
versing each of the input, forward and output chainsin an ipchains installation.

Table5.1. Filtering an iproute2 NAT packet with ipchains

Inbound to the NAT |IP

Chain SourcelP Destination IP

input 64.70.12.210 205.254.211.17

52

http://www.tldp.org/HOWTO/IPCHAINS-HOWTO-4.html#ss4.1
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO-4.html#ss4.1
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO-4.html#ss4.1
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://docum.org/stef.coene/qos/kptd/
http://docum.org/stef.coene/qos/kptd/

Network Address Translation (NAT)

Inbound to the NAT IP
Chain SourcelP ‘ Destination | P
Routing Stage
forward 64.70.12.210 192.168.100.17
output 64.70.12.210 192.168.100.17
Outbound from thereal 1P
Chain Source P Destination | P
input 192.168.100.17 64.70.12.210
Routing Stage
forward 205.254.211.17 64.70.12.210
output 205.254.211.17 64.70.12.210

A firewall implementing atight policy (deny all, selectively allow) will require alarge number of indi-
vidual rulesto allow the NAT packets to traverse the firewall packet filter. Assuming the configuration
detailed in Example 5.1, “ Stateless NAT Packet Capture”, the following set of chainsis required and

will restrict access to only port 25 *.

Example 5.4. Using an ipchains packet filter with stateless NAT

-y -s 0/0 1024: 65535 -d
-y -s 0/0 1024: 65535 -d
-s 0/0 1024: 65535 -d
-s 0/0 1024: 65535 -d
-y -s 192.168. 100.17 25 -d
-s 205.254.211.17 25 -d
-s 205.254.211.17 25 -d

-d
-d
-d

168. 100. 17 $icnptype -d
254.211.17 $icnptype -d
254.211.17 $icnptype -d

205. 254. 211.
192. 168. 100.
192. 168. 100.

0/0
0/0
0/0

[root @masg-gw] # i pchains -1 input -i ethl -p tcp -I
[root @asg-gw] # i pchains -1 input -i ethl -p tcp !
[root @masg-gw] # i pchains -1 forward -p tcp
[root @masg-gw] # i pchains -1 output -i ethO -p tcp
[root @masg-gw] # i pchains -1 input -i ethO -p tcp !
[root @masg-gw] # i pchains -1 forward -p tcp
[root @mesqg-gw # i pchains -1 output -i ethl -p tcp
[root @easqg-gw # for icnptype in \

> desti nati on-unreachabl e source-quench tine-exceeded par aneter-problem do
> ipchains -1 input -i ethl -picnp -s 0/0 $icnptype
> ipchains -1 forward -picnmp -s 0/0 $icnptype
> ipchains -1 output -i ethO -p icnp -s 0/0 $icnptype
> jpchains -1 input -i ethO -p icnp -s 192.

> jpchains -1 forward -p icnmp -s 205.

> jpchains -1 output -i ethl -p icnp -s 205.

> done

Please note that the formatting of the commandsis simply for display purposes, and to allow for easier
reading of acomplex set of commands. The above set of rulesis 31 individual chains. Thisis most cer-
tainly a complex set of rules. For further details on how to use ipchains please see the ipchains HOW-
TO [http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html]. The salient detail you should notice
from the above set of rulesisthe difference between the IPs used in the input and forward chains. Since

packets are rewritten by the stateless NAT code in the routing stage, the transformation of the packet

will by complete before the forward chain is traversed.

Thefirst two lines cover all inbound TCP packets, the first line as a special case of the second, indicat-
ing (- |) that we want to log the packet. After successfully traversing the input chain, the packet is rout-

4| assume here that the user has a restrictive default policy on the firewalling device. | suggest a policy of DENY on each of the built in ipchains

chains.

53

http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html

Network Address Translation (NAT)

ed, at which point the destination address of the packet has changed. Now, we need to forward the pack-
et from the public source address to the private (or real) internal 1P address. Finally, we need to allow
the packet out on the internal interface.

The next set of rules handles all of the TCP return packets. On the input rule, we are careful to match
only non-SY N packets from our internal server bound for the world. Once again, the packet is rewritten
during the routing stage. Now in the forward chain, the packet's source IP is the public I P of the service.
Finally, we need to | et the packet out on our external interface.

The next series of lines are required ICMP rules to prevent network traffic from breaking terribly. These
types of ICMP, particularly destination unreachable (ICMP 3) and source quench (ICMP 4) help to en-
sure that TCP sessions run with optimized characteristics.

These rules are the minimum set of ipchains rules needed to support aNAT'd TCP service. This con-
cludes our discussion of publishing a service to the world with iproute2 based NAT and protecting the

service with ipchains. Asyou can see, the complexity of supporting NAT with iproute2 can be substan-
tial, which iswhy we'll examine the benefits of inbound NAT (DNAT) with netfilter in the next section.

5. Destination NAT with netfilter (DNAT)

Destination NAT with netfilter is commonly used to publish a service from an internal RFC 1918 net-
work to apublicly accessible IP. To enable DNAT, at |east one iptables command is required. The con-
nection tracking mechanism of netfilter will ensure that subsequent packets exchanged in either direc-
tion (which can be identified as part of the existing DNAT connection) are also transformed.

In adevilishly subtle difference, netfilter DNAT does not cause the kernel to answer ARP requests for
the NAT IP, where iproute2 NAT automatically begins answering ARP requests for the NAT IP.

Example 5.5. Using DNAT for all protocols (and ports) on one P
[root @eal -server]# iptables -t nat - A PREROUTI NG -d 10.10.20.99 -j DNAT --to-dest

In this example, all packets arriving on the router with a destination of 10.10.20.99 will depart from the
router with a destination of 10.10.14.2.

Example 5.6. Using DNAT for asingle port

[root @eal -server]# iptables -t nat -A PREROUTING -p tcp -d 10.10.20.99 --dport 80

Full network address trandlation, as performed with iproute2 can be simulated with both netfilter SNAT
and DNAT, with the potential benefit (and attendent resource consumption) of connection tracking.

54

Network Address Translation (NAT)

Example5.7. Simulating full NAT with SNAT and DNAT

[root @eal -server]# iptables -t nat - A PREROUTI NG -d 205.254.211.17 -j DNAT --to-d
[root @eal -server]# iptables -t nat -A POSTROUTI NG -s 192.168. 100. 17 -j SNAT --to-

5.1. Port Address Translation with DNAT

6. Port Address Translation (PAT) from User-
space

Port address trandlation (hereafter PAT) provides a similar functionality to NAT, but is amore specific
tool. PAT forwards requests for a particular 1P and port pair to another IP port pair. This feature is com-
monly used on publicly connected hosts to make an internal service available to alarger network.

PAT will break in strange and wonderful ways if there is an aternate route between the two hosts con-
nected by the port address translation.

PAT has one important benefit over NAT (with the iproute2 tools). Let's assume that you have only five
public IP addresses for which you have paid dearly. Additionally, let's assume that you want to run ser-
vices on standard ports. Y ou had hoped to connect four SMTP servers, two SSH servers and five HTTP
servers. If you had wanted to accomplish thiswith NAT, you'd need more I P space.

7. Transparent PAT from Userspace

55

Chapter 6. Masquerading and Source
Network Address Translation

Masquerading for connections or traffic initiated from inside a network. Consider reading Chapter 5,
Network Address Translation (NAT) for details on handling inbound traffic or connections.

Masguerading has been supported under the linux kernel since before kernel 2.0. The technique of mas-
guerading

1. Concepts of Source NAT

1.1. Differences Between SNAT and Masquerading

Though SNAT and masquerading perform the same fundamental function, mapping one address space
into another one, the details differ dighly. Most noticeably, masguerading chooses the source IP address
for the outbound packet from the | P bound to the interface through which the packet will exit.

1.2. Double SNAT/Masquerading

2. Issues with SNAT/Masquerading and In-
bound Traffic

3. Where Masquerading and SNAT Break

56

Chapter 7. Packet Filtering

It is not an uncommon story today to hear how people were first exposed to linux. Many people found
linux an excellent and reliable masquerading firewall in the mid-1990s and slowly became more and
more accustomed to working with linux as a result of the low total cost of ownership.

The capabilities of packet filtering tools available under linux today dwarfs that of early linux
(ipfwadm, anybody?) yet retains the reliability and expressive flexibility of the older tools.

For networks and machines directly connected to the Internet, packet filtering is no longer an option,
but a need. This chapter will introduce the packet filtering tools available under kernels 2.2 and 2.4.
Since there is much avail able documentation on packet filtering, host protection and masquerading with
a packet filter, this chapter will refer liberally to external resources.

This chapter begins with an introduction to and the history of packet filtering with linux. After covering
some of the weaknesses of packet filtering, it will cover the netfilter architecture, and then delve into us-
ing iptables. An introduction to the use of ipchains will follow aong with introductions to host and net-
work protection. The chapter will close with an overview of further resources.

1. Rationale for and Introduction to Packet Fil-
tering

Packet filtering refers to the technique of conditionally allowing or denying packets entering or exiting
anetwork or host based on the characteristics of that packet. There are two fundamental types of pack-
et filters. A static packet filter is a set of rules against which every packet is checked, and allowed or de-
nied. A dynamic packet filter keepstrack of the connections currently passing the firewall. Thisis usu-
ally described as a stateful or dynamic packet filtering engine. Netfilter provides the capability for linux
(2.4+) to operate as a stateful packet filtering device.

For a brief digression, consider the term stateful packet inspection. This term has been used in two dis-
tinctly different meanings. At least one commercial security company differentiates between stateful
packet filtering and stateful packet inspection o Supposedly, a stateful packet inspection engineis able
to examine the contents of a packet and make a limited guess asto the legitimacy of the application lay-
er content. While | would call this an application layer proxy, | do not use the product. For the purposes
of this documentation, the terms stateful packet inspection and stateful packet filtering are synonomous.

Packet filtering, the network layer portion of afirewall solution, is one part of a good security stance.

As the embodiment and manifestation of an organizational security policy for network layer traffic, the
packet filter restricts traffic flows between networks and hosts. There is tremendous value from a securi-
ty perspective in enforcing these traffic flows, instead of allowing arbitrary traffic flow.

The use of packet filtering to enforce these traffic flows is not restricted to routers and firewalls alone.
Standal one servers and workstations can use these same tools to protect themselves. There are acouple
of common approaches to packet filtering. Generally, network security professionals subscribe to the no-
tion that the filtering policy should deny or drop al traffic and selectively allow desired traffic. An alter-
nate, more open, policy suggests allowing everything, selectively blocking undesirable traffic.

The languages used in most packet filtering tools for describing |P packets allow for a great deal of
specifity when identifying traffic. This specifity enables an administrator a great deal of flexibility for
protecting resources and limiting traffic flows.

1 See the following PDF [http://www.netmaster.com/products/ggos-dpf.pdf] from NetMaster Digital Security. Although | may disagree with their
use of terms, | can appreciate their clear attempt to explain their use of these two terms.

57

http://www.netmaster.com/products/ggos-dpf.pdf
http://www.netmaster.com/products/ggos-dpf.pdf

Packet Filtering

1.1. History of Linux Packet Filter Support

Packet filtering under linux has along history, punctuated by major alterations in the packet filtering
systems included in the kernel. In the mid- and late-1990s, ipfwadm exposed the three packet filtering
chains of kernel 2.0 to the user: in, forward, and out. Individual entries added to these chains would be
traversed in order in each ruleset. The first matching rule in each chain would be used, and every packet
passing through arouter would traverse these three chains.

With the advent of linux 2.2, users could create their own chains and chain structures. The kernel archi-
tecture was different from that of the earlier kernel, but from the user's perspective, the manner in which
the rules were written was only slightly different. Rule chains, traversed rather like subroutines and ma-
nipulated with ipchains, could be arbitrarily complex and nested. The built-in packet filtering chains had
names:. input, output and forward. The first matching rule in any chain called from one of the built-in
chains would be used. Every packet passing through arouter would traverse (at least) the three built-in
rule chains. There is backward compatible support for ipfwadm syntax via awrapper shell script which
converts the command to an ipchains syntax.

In kernel 2.4, the netfilter architecture which provides functionality other than packet filtering, allows
usersto create the arbitrary chains and chain structures similar to those supported by linux 2.2. The built
in chainsare INPUT, FORWARD, and OUTPUT. A mgjor difference in the use of chains wasintro-
duced in linux 2.4; packets passing through arouter will traverse the FORWARD chain only. User-de-
fined iptables chains resemble branches rather than subroutines. Under linux 2.4, ipchains compatibili-
ty is maintained with a kernel module. For ipfwadm compatibility, the kernel module and the af oremen-
tioned wrapper shell script function adequately.

The packet filtering support under linux has grown increasingly complex and mature with successive
kernels and development efforts on the user space tools. The netfilter architecture of linux 2.4 represent-
ed atremendous step forward in the packet filtering capabilities of linux with support for stateful packet
filtering.

2. Limits and Weaknesses of Packet Filtering

Although the functionality offered by linux kernels for protecting network resources with packet filter-
ing alows tremendously specific network layer access control and auditing capability, it alone cannot
successfully and completely protect network resources. There are weaknesses in and limits to the useful -
ness of packet filters.

2.1. Limits of the Usefulness of Packet Filtering

In cases where a packet filter restricts access to a resource based on the source | P address attempting to
access that resource, the packet filter cannot verify whether the packets originate from the real device or
from ahost or router spoofing this source address. A transparent proxy illustrates this problem perfect-
ly. A transparent proxy frequently runs on a masguerading or NAT host which is connected to the Inter-
net. This machine intercepts outbound connections for a particular protocol (e.g, HTTP), and simulates
thereal server to the client. The client may have a packet filter limiting outbound connectionsto asingle
IP and port pair, but the transparent proxy will still operate on the outbound connection.

Thisis an innocuous example, indeed. A potentially more threatening example is an ssh server which
accepts connections only from an |P range. Any router between the two endpoints which can spoof |P
packets will be able to pass the packet filter, whether it is a stateful or a static packet filter. This should
underscore the importance of solid application layer security in addition to the need for judiciously em-
ployed packet filtering.

58

Packet Filtering

A packet filter makes no effort to validate the contents of a data stream, so data passed over a packet fil-
ter may be bogus, invalid or otherwise incorrect. The packet filter only verifies that the network layer
datagrams are correctly addressed and well-formed 2, Many security devices, such as firewalls, include
support for proxies, which are application aware. These are security mechanisms which can validate da-
ta streams. Proxies are often integrated with packet filters for atight network layer and application layer
firewall.

Tunnels are one of the most common ways to subvert a packet filter. They come in wide varieties: ssh
tunnels which allow users to transport TCP sessionsinto or out of a network; GRE tunnels, which allow
arbitrary packets to be encapsulated in an IP packet; UDP tunnels; VPN tunnels; TAP/TUN tunnels; and
application layer transport tunnels, such as RPC over HTTP/HTTPS. Some of these tunnels are very dif-
ficult to prevent with packet filtering, while others are trivial to block.

Perhaps it is apparent, why ** FIXME** adversarial relationship between packet filters and
content....limitation of packet filter....hence proxies...blah blah blah.

Use of ICMP, when to block ICMP; tunneling through lax packet filters with ICMP (trinoo, |CM Pchat).

Another area of network security which is not addressed by packet filtering is encryption. Encryption
can be used at a number of different layersin a networked environment. Compare | PSec, encrypted
packets, with Secure Sockets Layer (SSL), which encrypts a single application layer session. 1PSec op-
erates at layer 3, while SSL operates above layer 4. Packet filtering does not directly address the issue of
encryption in any way. Both are tools used in an ongoing effort to maintain and secure a network.

There are afew good starting place for those needing guidelines on securing machines. First, the Secu-
rity Quickstart HOWTO [http://tldp.org/HOWTO/Security-Quickstart-HOWTO/index.html] is a good
place to begin. Thereis also the Security HOWTO [http://tldp.org/HOWTO/Security-HOWTO/]. These
and several other good general security resources are also available via linuxsecurity.com's documenta-
tion area [http://www.linuxsecurity.com/docs/].

Much of the previous discussion applies to packet filtering in general, and linux suffers from the same
limitations of packet filtering. It isfolly to assume that a good packet filter makes a network immune
from security issues.

2.2. Weaknesses of Packet Filtering

The weaknesses of static (or stateless) packet filters and stateful packet filters are different in afew
ways. Stateless packet filters frequently block SYN scans of networks, but

Statel ess packet filters. (cf. iptables connection tracking), cf. state vs. statel ess discussion.

confounded application layer protocols like FTP, H323

Because of the nature of connection tracking and state awareness, stateful packet filters are vulnerable to
resource exhaustion and deliberate attemptsto trip rate-limiting features.

DoS on connection tracking packet filters DoS on rate limiters ?

2.3. Complex Network Layer Stateless Packet Filters

2 In truth, there is some examination of datainside the network layer datagram. Almost all packet filtering engines allow the user to distinguish
between the different IP protocol types, such as GRE, TCP, UDP, ICMP, and even attributes of these datagrams and segments. The important
thing to realize is that a packet filter makes no effort to examine the data stream.

59

http://tldp.org/HOWTO/Security-Quickstart-HOWTO/index.html
http://tldp.org/HOWTO/Security-Quickstart-HOWTO/index.html
http://tldp.org/HOWTO/Security-Quickstart-HOWTO/index.html
http://tldp.org/HOWTO/Security-HOWTO/
http://tldp.org/HOWTO/Security-HOWTO/
http://www.linuxsecurity.com/docs/
http://www.linuxsecurity.com/docs/
http://www.linuxsecurity.com/docs/

Packet Filtering

3. General Packet Filter Requirements

minimum ICMP required to meet the networking needs; xref PMTU discussion
source quench

parameter problem

inbound destination unreachable

outbound destination unreachabl e fragmentation needed

optional: echo request and echo reply

optional: outbound destination unreachable

optional: time exceeded

4. The Netfilter Architecture

packet filtering engine in kernel 2.2 (skip history, adequately documented el sewhere)
packet filtering engine as part of netfilter in kernel 2.4, backwards compatible support for ipchains

differences between the packet traversal in ipchains and iptables. link to Stef Coene's KPTD (kernel
2.4). Anybody know of alink to aKPTD for kernel 2.2?

4.1. Packet Filtering with iptables

selecting on interface

different chains, INPUT, OUTPUT, FORWARD
big picture; how chains are traversed

selecting on interface -i -0

targets; ACCEPT, DROP, REJECT....

5. Packet Filtering with ipchains

the three builtin chains, input, output, forward

policy per chain, see targets

jumping from chain to chain, -j $TARGET; wher TARGET=chain
the big picture; how chains are traversed

targets (other than chains) ACCEPT, DENY, REJECT....

selecting on interface

60

Packet Filtering

5.1. Packet Mangling with ipchains

6. Protecting a Host

Host protection in the past was typically performed with application layer checks on the originating
IP or hostname. Thiswas (and still is) frequently accomplished with libwrap, which verifies whether
or not to allow a connection based on the contents of the system wide configuration files/ et ¢/
hosts. al owand/ et c/ host s. deny.

Host protection is one part of protecting a host, by preventing inbound packets from reaching higher lay-
ers. Thisis no substitute for tight application layer security. Strong network and host-level packet filters
mitigate a host's exposure when it is connected to a network.

Example 7.1. Blocking a destination and using the REJECT tar get, cf.
Example D.17, “Adding a pr ohi bi t routewith route add”

[root @esqg-gw # i ptables -1 FORWARD -p tcp -d 209.10.26.51 --dport 22 -j REJECT
[root @ristan]# ssh 209.10. 26. 51

ssh: connect to address 209.10.26.51 port 22: Connection refused

[root @esqg-gw # tcpdunp -nng -i eth2

tcpdunp: |istening on eth2

22:16:59.111947 192.168.99. 35. 51991 > 209. 10. 26.51.22: tcp 0 (DF)

22:16:59.112270 192.168.99. 254 > 192. 168. 99. 35: icnp: 209.10.26.51 tcp port 22 unr

7. Protecting a Network

8. Further Resources

The use of linux packet filtering features is mature and well-documented in many places throughout the
Internet. One of the most thorough introductions to the use of iptables has been collected by Oskar An-
dreasson at his Iptables tutorial [http://iptables-tutorial .frozentux.net/]. For further reference material on
the use of iptables consult this resource.

For those continuing to use ipchains the ipchains HOWTO [http://www.tldp.org/HOWTO/IPCHAINS-
HOWTO.html] courtesy of TLDP provides an introduction to the world of ipchains.

For kernel 2.4, understanding the sequence of packet mangling, filtering and network address trans-
lation is key. The kernel packet traveling diagram [http://www.docum.org/stef.coene/qos/kptd/] pro-
vides avisual representation of the path a packet takes through the kernel. Here you will see the net-
filter hooks, traffic control, and routing stages. A similar picture of kernel 2.4's packet path is avail-

61

http://iptables-tutorial.frozentux.net/
http://iptables-tutorial.frozentux.net/
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.docum.org/stef.coene/qos/kptd/
http://www.docum.org/stef.coene/qos/kptd/

Packet Filtering

ablein asingle page PDF entitled Linux Kernel 2.4 Packet handling [http://open-source.arkoon.net/ker-
nel/kernel_net.png].

See also Section 1.8, “ipchains Resources’ and Section 1.7, “Netfilter Resources’ in the appendices for
amore complete set of references and links.

62

http://open-source.arkoon.net/kernel/kernel_net.png
http://open-source.arkoon.net/kernel/kernel_net.png
http://open-source.arkoon.net/kernel/kernel_net.png

Chapter 8. Statefulness and
Statelessness

1.

2. Statelessness of IP Routing

3. Netfilter Connection Tracking

3.1.

3.2.

63

Part Il. Cookbook

The content in this part isintended as a practical, hands-on guide to users wanting real, tested solutions.

The remainder of this documentation iswritten in alessformal style, and is heavy on examples. It should be viewed
as practical explication of the above chapters.

Table of Contents

9. AdvanCed [P MaNagEIMENT ittt e e et e e e ent e e e ena e eeees 66
1. Multiple IPs and the ARP Problem ..o 66
2. Multiple IP Networks on one Ethernet Segmentovevviiiieiiiiiniec e 66
3. Breaking a network in two with proxXy ARPcooiiiiii e 66
4. Multiple IPS 0N @n INTEITACEcoouii e 67
5. Multiple connections to the same Ethernet ..o 68
6. MUITINOMEA HOSES ...t e s 68
7. Binding t0 NON-10Cal AAIrESSESciiiiiieieii et 68
10. AGVANCED TP ROULING ...veeeiiit ettt ettt ettt e e e et e e e et e e e eata e eeees 69
1. Introduction t0 POlICY ROULINGccuuuiiiiiiieiiiii e e 69
2. Overview of Routing and Packet Filter INteraCtionsc..ovveiiiiinieiiiiiicc e 69
3. Using the Routing Policy Database and Multiple Routing Tablesocoiviiiiiiiinieennes 70
3.1. Using Type of Service Policy ROULINGooeviviiiiiiiiiiieeiii e 71
3.2. Using fwmark for POlICY ROULINGcccuuuiiiiiiiiieeiiiie e 71
3.3. Policy RoUtiNg @Nd NAT ...t 71
4. Multiple Connections t0 the INTEIMELoiiiii e 71
4.1. Outbound traffic Using Multiple Connectionsto the Internetcccooeveeeennnnn. 72
4.2. Inbound traffic Using Multiple Connectionsto the Internetcccooeveviiienennnn. 74
4.3. Using Multiple Connections to the Internet for Inbound and Outbound Connec-
1([0] 0 PSP PP UPPRT 76
11, Scripts for Managing [P ... 77
L ProXY ARP SCIIPES vttt ettt 77
2. INAT SOIIPES wette ettt ettt ettt e et e ettt e e et e e e e 80
12, TrOUBIESNOOLING ...evvueeeeii ettt e e e et e et e e e e s 87
1. Introduction to TroublEShOOLINGueiiiiiieiiii e 87
2. Troubleshooting at the Ethernet Layeroveiiiiiiieiiiiieeeeii e 87
3. Troubleshooting at the TP LayErooeeieiiiii e 87
4. Handling and Diagnosing Routing Problemsocoiuiiiiiiiin e 87
5. Identifying Problems with TCP SESSIONSiiiiiiiiiiiii e 87
6. DNS Troubl@SNOOING ... ceeeiieiiit ettt eeens 87

65

Chapter 9. Advanced IP Management

In many of the previous chapters, we have covered the many of the key elements required to understand
basic networking with linux. In this chapter, we will introduce afew new concepts, but will endeavor to
put some of the ideas together to solve practical networking problems.

1. Multiple IPs and the ARP Problem

ARPflux./ proc/ sys/ net/i pv4/ conf/al |/ hi dden Nothing here for now. Refer to Sec-
tion 1.4, “The ARP Flux Problem”.

2. Multiple IP Networks on one Ethernet Seg-
ment

Media share; IP overlay; compare VLANS; consider bridging; consider migrating from one | P space to
another (vrrpd, anybody?).

3. Breaking a network in two with proxy ARP

Proxy ARP isatechnique for splitting an IP network into two separate segments. Hosts on one segment
can only reach hosts in the other segment through the router performing proxy ARP. If arouter sits be-
tween two parts of an IP network and is not running bridging software, then routes to hosts in each seg-
ment and proxy ARP are required on the router to allow each half of the network to communicate with
the other half.

Occasionaly, this technique isincorrectly called proxy ARP bridging. An Ethernet bridge operates on
frames and arouter operates on packets. The proxy ARP router should have routesto al hosts on both
segments. Once the router can reach all locally connected destinations via the correct interfaces, you can
begin to configure the proxy ARP functionality.

Although proxy ARP complicates a network, a great advantage of proxy ARP technique is the greater
control over |P connections between hosts.

There are two primary proxy ARP techniques. With the 2.4 kernel, it is possible to use the sysctl net /
i pv4/ conf/all/proxy_ar p to perform proxy ARP. Alternatively, manual population of the ARP
table reaches the same end.

The key part of the correct functioning of proxy ARP in anetwork isthat the host breaking a network
into two parts has correct routes for all destinations in both halves of the network. If the host which has
interfaces in both networks does not have an accurate routing table, | P packets will get dropped on the
routing device.

One common method of breaking a network in two involves making a very small stub subnet at one end
or the other of the IP range. This small subnet (maybe as small as a/30 network, with two usable |Ps)
makes an excellent sequestered location for a host which requires more protection or even, agenerally
untrusted host which shouldn't have complete access to the Ethernet to which the other machines con-
nect.

For a practical example of this, see the relationship between the ser vi ce- r out er, masq- gw
andi sol de inthe network map. i sol de and ser vi ce-r out er share the same |IP network,
192.168.100.0/24. If either has a packet for the other, it will generate an ARP request which should be

66

Advanced |P Management

answered by masq- gw. Naturally, masq- gw has its routes configured in such away that both hosts are
reachable fromit. Thus, the packet will successfully pass through masq- gw.

L et's examine what the sequence of eventsis by which the packet will reach ser vi ce-r out er from
i sol de. Inthisexample, i sol de will send an echo request packet to ser vi ce- r out er . Please a-
so refer to Section 1, “arp” for examples and command lines to create a proxy ARP configuration.

» theadminoni sol de creates an echo request packet for 192.168.100.1 with ping
i sol de sendsan ARP request for the owner of 192.168.100.1

* masq- gwrepliesthat i sol de should send packets for 192.168.100.1 to its Ethernet address,
00:80:¢8:f8:5¢c:71

* masq- gw receives the packet, unwraps it and selects eth3 as the output interface
* nmasq- gwsends an ARP request for the owner of 192.168.100.1

e service-rout er repliesthat masq- gwshould send packets for 192.168.100.1 to its Ethernet ad-
dress, 00:¢0:7b:7d:00:c8

* service-rout er receivesthe packet unwrapsit and hands it up the IP stack, which generates an
echo reply bound for the source address, 192.168.100.17 (i sol de'sIP)

» servi ce-rout er sendsan ARP regquest for the owner of 192.168.100.17

* nmasq- gwrepliesthat ser vi ce- r out er should send packets for 192.168.100.17 to its Ethernet
address, 00:80:¢8:f8:5c:74

* masq- gwreceives the packet, unwrapsit and selects ethO as the output interface
* masq- gwsends an ARP request for the owner of 192.168.100.17

* i sol de repliesthat masqg- gw should send packets for 192.168.100.17 to its Ethernet address,
00:80:c8:e8:4b:8e

* i sol de receivesthereply, unwrapsit and hands it up the I P stack to the awaiting ping command

Where possible, a simplified network is easier to maintain, but occasionally, this sort of trickery is nec-
essary. Thisis an excellent way to insert afirewall into the middle of a network. The firewall, naturally,
has to have its routes set properly, and proxy ARP entries will be required for routers.

Now, here's a short script and configuration file which can be run as a SysVInit style script. This script
provides agreat deal of control over the ARP table directly so may be preferable in some cases to an
alternate solution outlined below. This proxy-arp script reads the following configuration file. Eachis
commented heavily so it should be clear how to use them.

This chapter discussed how to break a network in twain with proxy ARP techniques. For another expla-
nation of the same concepts, read the Proxy ARP Subnet mini-HOWTO [http://www.linuxpowered.com/
HOWTO/mini/Proxy-ARP-Subnet/]. Availablein most (all?) 2.4 kernelsis built-in capability for Proxy
ARP. Thisisdocumented in deeper detail above. Consider familiarizing yourself with the methods of
suppressing and controling ARP through Julian Anastasov's work [http://www.ssi.bg/~ja/].

4. Multiple IPs on an Interface

Don't forget to add something here about multiple 1Ps bound to loopback; and refer to Julian's work.
FIXME

67

http://www.linuxpowered.com/HOWTO/mini/Proxy-ARP-Subnet/
http://www.linuxpowered.com/HOWTO/mini/Proxy-ARP-Subnet/
http://www.linuxpowered.com/HOWTO/mini/Proxy-ARP-Subnet/
http://www.ssi.bg/~ja/
http://www.ssi.bg/~ja/

Advanced |P Management

5. Multiple connections to the same Ethernet

Assume a machine has multiple connections to the same Ethernet segment, and has individual 1Ps bound
to each interface. A peculiar feature of linux isits willingness to respond to ARP requests for any IP
bound to any interface. This can lead to ARP flux, a situation where a given IP is sometimes accessed on
one MAC address and sometimes another.

/ proc/ sys/ net/ipv4/ conf/all/hidden;consider arp suppression issues.

6. Multihomed Hosts

Consider ARP suppression issues. Leakage of sensitive (IP addressing) information from other inter-
faces.

7. Binding to Non-local Addresses

FIXME!! Don't forget to note that iproute2 NAT and binding to non-local 1Ps do not play well to-
gether. | disagree with this [http://www.cs.helsinki.fi/linux/linux-kernel/2001-22/0813.html]. Binding
to anon-local socket, which was possible under kernel 2.2 with when the kernel was compiled with
CONFIG_IP_TRANSPROXY, isavailable under kernel 2.4 viathe/ pr oc IP sysctl interface. If you
wish to be able to bind to non-local sockets:

echo 1 > /proc/sys/net/ipv4/ip_nonlocal bind

Thanks go to Oskar Andreasson for his IP sysctl tutorial page. If using sysctl to allow binding to non-lo-
cal |P doesn't solve your problem, then seeif netfilter NAT can be used to solve this class of problem.
Some people view the technique of binding to non-local | Ps as spoofing, and indeed, it can be used for
nefarious purposes, if an attacker controls a machine on the route between atarget and avictim.

68

http://www.cs.helsinki.fi/linux/linux-kernel/2001-22/0813.html
http://www.cs.helsinki.fi/linux/linux-kernel/2001-22/0813.html

Chapter 10. Advanced IP Routing

1. Introduction to Policy Routing

2. Overview of Routing and Packet Filter Inter-
actions

One of the most difficult aspects of working with the advanced routing features of linux isgaining an
understanding the sequence of events as a packet traverses the kernel space. It is, in fact, the key knowl-
edge needed to grasp the potential of advanced routing scenarios and to troubleshoot successfully when
things don't go as planned.

If you are reading this for the first time, stop now and go visit and study the kernel packet traveling di-
agram [http://docum.org/stef.coene/qos/kptd/] and the kernel packet handling diagram [http://open-
source.arkoon.net/kernel/kernel_net.png] now. These represent two different efforts to describe the order
in which different networking subsystems inside the linux kernel have an opportunity to inspect, manip-
ulate and redirect a packet. Understanding this sequence of eventsis key to harnessing the power of lin-
ux networking.

Now, let's examine some of the different commands you can use to manipulate packets at each of these
stages. The list below describes the sequence of events for a packet bound for a non-local destination.

Packet Traversal; Non-L ocal Destination

 All of the PREROUTING netfilter hooks are called here. This means that we get our first opportuni-
ty to inspect and drop a packet, we can perform DNAT on the packet to make sure that the destination
IP isrewritten before we make arouting decision (at which time the destination address becomes very
important). We can also set ToS or an fwmark on the packet at thistime. If we want to use an IMQ
device for ingress control, we can put our hooks here.

 If weare using ipchains, the input chain is traversed.
» Any traffic control on the real device on which the packet arrived is now performed.

» Theinput routing stage is traversed by any packet entering the local machine. Here we concern our-
selves only with packets which are routed through this machine to another destination Additionally,
iproute2 NAT occurs here .

» The packet enters the FORWARD netfilter hooks. Here, the packet can be mangled with ToS or fw-
mark. After the mangle chain is passed, the filter chain will be traversed. For kernel 2.4-based routing
devices thiswill be the location for packet filtering rules. If we are using ipchains, the forward chain
would be traversed here instead of the netfilter FORWARD hooks.

» The output chain in an ipchains installation would be traversed here.

e The POSTROUTING netfilter hooks are traversed. These include packet mangling, NAT and IMQ
for egress.

 Finally, the packet is transmitted via the outbound device per traffic control configuration on that out-
bound device.

! Leonardo calls this"dumb NAT" because the NAT performed by iproute2 at the routing stage is statel ess.

69

http://docum.org/stef.coene/qos/kptd/
http://docum.org/stef.coene/qos/kptd/
http://docum.org/stef.coene/qos/kptd/
http://open-source.arkoon.net/kernel/kernel_net.png
http://open-source.arkoon.net/kernel/kernel_net.png
http://open-source.arkoon.net/kernel/kernel_net.png

Advanced IP Routing

The above describes the sequence of events for packets passing through the linux routing device. Let's
look at asimilar descriptions of the paths that packets bound for local destinations take through the ker-
nel.

Packet Traversal; Local Destination

All of the PREROUTING netfilter hooks are called here. This means that we get our first opportuni-
ty to inspect and drop a packet, we can perform DNAT on the packet to make sure that the destination
IPisrewritten before we make a routing decision (at which time the destination address becomes very
important). We can also set ToS or an fwmark on the packet at thistime. If we want to use an IMQ
device for ingress control, we can put our hooks here.

If we are using ipchains, the input chain is traversed.
Any traffic control on the real device on which the packet arrived is now performed.

The input routing stage is traversed by any packet entering the local machine. Here we concern our-
selves with packets bound for local destinations only.

The INPUT netfilter hooks are traversed. Commonly thisisfiltering for inbound connections, but can
include packet mangling.

Thelocal destination process receives the connection. If thereis no open socket, an error is generated.

Naturally, packets need to go out from the machine as well, so let'slook at the path for outbound packets
which were locally generated.

Packet Traversal; Locally Generated

The process with the open socket sends data.

The routing decision is made. Thisis frequently called output routing because it isonly for packets
leaving the system. This routing code is (sometimes?) responsible for selecting the source IP of the
outbound packet.

The netfilter OUTPUT hooks are traversed. The basic filter, nat, and mangle hooks are available. This
iswhere SNAT can take place.

The output chain in an ipchains installation would be traversed here.

The POSTROUTING netfilter hooks are traversed. These include packet mangling, NAT and IMQ
for egress.

Finally, the packet is transmitted via the outbound device per traffic control configuration on that out-
bound device.

3. Using the Routing Policy Database and Mul-
tiple Routing Tables

Understanding and practically applying the knowledge of how and when to harness the routing features
of linux is amatter of experience. The below is a set of examples for how to use the RPDB and mulltiple

70

Advanced IP Routing

routing tables to solve different types of problems. These are but afew simple examples which aludeto
the flexibility and power available with the complex policy routing system under linux.

3.1. Using Type of Service Policy Routing

Type of Service (ToS) isaflag in the header of an IP packet which is sometimes honored by upstream
routers. Some routers on the Internet respect the ToS flag and others do not, however, the ToS flag can
be used as part of the decision about where to route a given packet (for arefresher on the keys used for
routing to a destination read Section 5, “ Route Selection”). Because it can be used as part of the routing
decision, ToS can be used to select aroute separate from the route chosen for normal packets (packets
not marked with any ToS).

3.2. Using fwmark for Policy Routing

FIXME!! Don't forget to point out that fwmark with ipchaing/iptables is a decimal number, but
that iproute2 uses hexadecimal number. Thanks to Jose Luis Domingo Lopez for his post [http://
mailman.ds9a.nl/pipermail/lartc/200293/005039.html] to the LARTC list!

3.3. Policy Routing and NAT

4. Multiple Connections to the Internet

The questions summarized in this section should rightly be entered into the FAQ, since they are FAQs
on the LARTC list [http://mailman.ds9a.nl/mailman/listinfo/lartc].

There are many places where alinux based router/masquerading device can assist in managing multi-
ple Internet connections. Wel'l outline here some of the more common setups involving multiple Internet
connections and how to manage them with iptables, ipchains, and iproute2. One of the first distinctions
you can make when planning how to use multiple Internet connections is what inbound services you ex-
pect to host and how you want to split traffic over the multiple links.

In the discussion and examples below, I'll address the issues involved with two separate uplinksto two
different providers. | assume the following:

* You are not using BGP, and you do not have your own AS. If you are usi ng BGP and have your own
AS, you have a different set of problems than the problems described here “.

* You have two netblocks from two different | SPs.

» You arefunneling your internal network through this routing device, which is performing masquerad-
ing/NAT to the Internet.

Additionally, I'll restrict my comments to statically assigned public | P address ranges unless | mention
(in particular) dynamically allocated addresses.

In the following sections we'll 1ook at the use of multiple Internet connections first in terms of outbound
traffic only, then in terms of inbound traffic only. After that, we'll look at using multiple Internet con-
nections for handling both inbound and outbound services.

2 Anybody who has any experience with linux as afirewall behind a BGP device? Linux as afirewall/router running BGP? Thoughts? Things |
should include here? Y eah, | know about Zebra [http://www.zebra.org/], but | haven't ever used it.

71

http://mailman.ds9a.nl/pipermail/lartc/2002q3/005039.html
http://mailman.ds9a.nl/pipermail/lartc/2002q3/005039.html
http://mailman.ds9a.nl/pipermail/lartc/2002q3/005039.html
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://www.zebra.org/
http://www.zebra.org/

Advanced IP Routing

4.1. Outbound traffic Using Multiple Connections to the
Internet

There are two main uses for multiple Internet links connected to the same internal network. One com-
mon use is to select an outbound link based on the type of outbound service. The other isto split traf-
fic arbitrarily across multiple I1SPs for reasons like failover and to accommodate greater aggregate band-
width than would be available on a single uplink.

If your need is the latter, please consult the documentation on the LARTC site [http://lartc.org/how-
to/lartc.rpdb.multiple-links.html], as it does a good job of summarizing the issues involved and describes
how to accomplish this. This type of use of multiple Internet connections means that (from the perspec-
tive of the linux routing device), there is a multipath default route. The LARTC documentation remarks
that Julian Anastasov's patches "make things nicer to work with." The patches to which the LARTC doc-
uments are referring are Julian's dead gateway detection patches (at least) which can help the linux rout-
ing device provide Internet service to the internal network when one of the linksis down. See here for
Julian's route work [http://www.ssi.bg/~ja/#routes].

In the remainder of this section, we'll discuss how to classify traffic for different 1SPs, how to handle the
packet filtering for this sort of classification scheme, and how to create routing tables appropriate for the
task at hand. If anything at all seems unclear in this section, you may find a quick re-reading of the ad-
vanced routing overview quite fruitful.

The simplest way to split Internet access into two separate groupsis by source IP of the outbound pack-
et. This can be done most simply with ip rule and a second routing table. We'll assume that masq- gw
in the example network gets a second, low cost network connection through a DSL vendor.

TheDSL IPon nmasq- gwwill be 67.17.28.12 with a gateway of 67.17.28.14. We'll assume that thisis
for outbound connectivity only, and that the IP is active on eth4 of the masq- gw machine. Before be-
ginning let's outline the process we are going to follow.

» Copy the main routing table to another routing table and set the alternate default route 3,

Use iptables/ipchainsto mark traffic with fwmark.

Add arule to the routing policy database.
o Tedt!

Here's a short snippet of shell which you may find handy for copying one routing table to another; see
the full script [scripts/copy-routing-table.sh] for a more generalized example.

Example 10.1. Multiple Outbound Internet links, part |; ip route

[root @masqg-gw # i p route show table main
192. 168. 100. 0/ 30 dev eth3 scope |ink
67.17.28.0/28 dev eth4 scope |ink

205. 254.211. 0/ 24 dev ethl scope |ink
192. 168. 100. 0/ 24 dev ethO scope |ink
192. 168. 99. 0/ 24 dev ethO scope |ink

3 Sometimesiit may not be quite proper to simply copy the main routing table to another routing table. Y ou may want a subset of hosts on the in-
ternal network to access the alternate link. Anybody have any sage advice here for the newbie in multiple routing tables?

72

http://lartc.org/howto/lartc.rpdb.multiple-links.html
http://lartc.org/howto/lartc.rpdb.multiple-links.html
http://lartc.org/howto/lartc.rpdb.multiple-links.html
http://www.ssi.bg/~ja/#routes
http://www.ssi.bg/~ja/#routes
http://www.ssi.bg/~ja/#routes
scripts/copy-routing-table.sh
scripts/copy-routing-table.sh

Advanced IP Routing

192.168.98. 0/ 24 via 192.168.99.1 dev ethO

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev I o scope |ink

default via 205.254.211. 254 dev ethl

[root @masqg-gwj# ip route flush table 4

[root @masqg-gw # ip route show table main | grep -Ev ~default \
> | while read ROUTE ; do

> ip route add table 4 $ROUTE

> done

[root @asg-gw# ip route add table 4 default via 67.17.28.14
[root @asqg-gw # ip route show table 4

192. 168. 100. 0/ 30 dev eth3 scope |ink

67.17.28.0/28 dev eth4 scope |ink

205. 254.211. 0/ 24 dev ethl scope |ink

192. 168. 100. 0/ 24 dev ethO scope |ink

192. 168. 99. 0/ 24 dev ethO scope |ink

192.168.98. 0/ 24 via 192.168.99.1 dev ethO

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev o scope |ink

default via 67.17.28.14 dev eth4

Now, exactly what have we just done? We have created two routing tables on masqg- gw each of which
has a different default gateway. We have successfully accomplished the first part of our preparations.

Now, let's mark the traffic we would like to route in using conditional logic. Well use iptablesto select
traffic bound for destination ports 80 and 443 originating in the main office desktop network.

Example 10.2. Multiple Outbound Internet links, part I1; iptables

[root @measqg-gw # i ptables -t mangle -A PREROUTING -p tcp --dport 80 -s 192.168.99.0
[root @masqg-gw # i ptables -t mangle -A PREROUTING -p tcp --dport 443 -s 192.168. 99.
[root @masqg-gw] # | ptables -t mangle -nvL

Chai n PRERQUTI NG (pol i cy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination
0 0 MARK tcp -- * * 192. 168. 99. 0/ 24 0.0.0.0/0
0 0 MARK tcp -- * * 192. 168. 99. 0/ 24 0.0.0.0/0

Chai n QUTPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
[root @masqg-gw # i ptables -t nat -A POSTROUTING -0 eth4 -j SNAT --to-source 67.17.2
[root @masqg-gw # i ptables -t nat -A POSTROUTI NG -0 ethl -j SNAT --to-source 205. 254
Chai n PRERQUTI NG (pol i cy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chai n POSTROUTI NG (pol i cy ACCEPT O packets, 0 bytes)

pkts bytes target prot opt in out source destination
0 0 SNAT all -- * et h4 0.0.0.0/0 0.0.0.0/0
0 0 SNAT all -- * et hl 0.0.0.0/0 0.0.0.0/0

Chai n QUTPUT (policy ACCEPT O packets, 0 bytes)
pkts bytes target prot opt in out source destination

73

Advanced IP Routing

With these iptables lines we have instructed netfilter to mark packets matching these criteriawith the
fwmark and we have prepared the NAT rules so that our outbound packets will originate from the cor-
rect I1Ps.

Once again, it isimportant to realize that the fwmark added to a packet is only valid and discernible
while the packet is still on the host running the packet filter. The fwmark is stored in a data structure the
kernel usesto track the packet. Because the fwmark is not a part of the packet itself, the fwmark is lost
as soon as the packet has left the local machine. For more detail on the use of fwmark, see Section 3.2,
“Using fwmark for Policy Routing”.

iproute? supports the use of fwmark as a selector for rule lookups, so we can use fwmarksin the routing
policy database to cause packets to be conditionally routed based on that fwmark. This can lead to great
complexity if a machine has multiple routing tables, packet filters, and other fancy networking tools,
such as NAT or proxies. Caveat emptor.

A convention | find sensible is to use the same number for a routing table and fwmark where possible.
This simplifies the maintenance of the systems which are using iproute2 and fwmark, especialy if the
table identifier and fwmark are set in a configuration file with the same variable name. Since we are test-
ing this on the command line, we'll just make sure that we can add the rules first.

Example 10.3. Multiple Outbound Internet links, part I11; ip rule

[root @masqg-gwj# ip rule add fwrark 4 table 4
[root @masqg-gw # ip rul e show

0: fromall | ookup |ocal
32765: fromall fwrark 4 | ookup 4
32766: fromall |ookup main

32767: fromall |ookup 253
[root @masqg-gw]# ip route flush cache

The last pieceisin place. Now, usersin the 192.168.99.0/24 subnet who are browsing the Internet
should be using the DSL line instead of the T1 line for connectivity.

In order to verify that traffic is indeed getting marked and routed appropriately, you should use tcp-
dump to profile the outbound traffic on each link at the same time as you generate outbound traffic on
both links.

The aboveis a cookbook example of categorizing traffic, and sending the traffic out across different
providers. To my knowledge, the commonest reason to use this sort of solution is to separate traffic by
importance and use areliable (and perhaps more costly) link for the more important traffic while reserv-
ing the less costly Internet connection for other connections. In the aboveillustrative case, we have sim-
ply selected the web traffic for the less reliable (DSL) provider.

Once again, if you would like to split load over multiple links regardless of classification of traffic, then
you really want a multipath default route, which is described and documented very well inthe LARTC
HOWTO [http://lartc.org/howto/lartc.rpdb.multiple-links.html].

4.2. Inbound traffic Using Multiple Connections to the In-
ternet

There are many different ways to handle hosting servers to multiple I SPs, and most of them are out of
the scope of this document. If you are in need of this sort of advanced networking, you probably already

74

http://lartc.org/howto/lartc.rpdb.multiple-links.html
http://lartc.org/howto/lartc.rpdb.multiple-links.html
http://lartc.org/howto/lartc.rpdb.multiple-links.html

Advanced IP Routing

know where to research. If not, I'd suggest starting your research in load balancing, global load balanc-
ing, failover, and layer 4-7 switching. These are networking tools which can facilitate the management
of ahighly available service.

Publishing the same service on two different ISPs is can be formidable challenge. While thisis possi-
ble using some of the advanced networking features under linux, one should understand the greater is-
sues involved with publishing a service on two public IPs, especially if theideaisto provide serviceto
the general Internet even if one of the 1SPs go down. For athorough examination of the topicsinvolved
with load balancing of al kinds, see Chandra Kopparapu's book Load Balancing Servers, Firewalls and
Caches.

If you are aware of the many difficult issues involved in handling inbound connections to a network, and
till want to publish a service on two different | SPs (perhaps before you have a more robust |oad balanc-
ing/upper layer switching technology in place), you'll find the recipe below.

Before we examine the recipe, let'slook at a complex scenario to see what the crucia points are. If you
do not have the kernel packet traveling diagram [http://www.docum.org/stef.coene/qos/kptd/] memo-
rized, you may wish to refer to it in the following discussion. One other item to remember is that routing
decisions are stateless %,

Well assume that the client IPis afixed IP (64.70.12.210) and we'll discuss how this client P would
reach each of the services published on mas q- gws two public networks. The IPs used for the services
will be 67.17.28.10 and 205.254.211.17. Now, whether you are using NAT with iproute2 or with ipta
bles, you'll run across the problem here outlined. Here is the flow of the packet through masq- gwto the
server and back to the client.

Inbound NAT to the same server viatwo public I Psin two different networks
1. inbound packet from 64.70.12.210 to 67.17.28.10 arrives on eth4

2. packet is accepted, rewritten, and routed; from 64.70.12.210 to 192.168.100.17; if iptables DNAT,
packet is rewritten in PREROUTING chain of nat table, then routed; if iproute2, packet is routed and
rewritten simultaneously

3. rewritten packet is transmitted out ethO
4. i sol de receives packet, accepts, responds
5. inbound packet from 192.168.100.17 to 64.70.12.210

6. routing decision is made; default route (via 205.254.211.254) is selected; if iproute2 is used, packet
is also rewritten from 67.17.28.10 to 64.70.12.210

7. if iptables DNAT is used, connection tracking will take care of rewriting this packet from
67.17.28.10 t0 64.70.12.210

8. packet istransmitted out ethl

Thisisthe problem! The packet may have the correct source address, but it isleaving viathe wrong in-
terface. Many |1SPsfilter traffic entering their network and will block traffic from your network with
source IPs outside your allocated range. To an ISP thislooks like spoofed traffic.

The solution is marvelously elegant and simple. Select one |P on the internal server which will be reach-
able viaone provider and one IP which will be reachable via the other provider. By using two I P ad-

4 The followi ng discussion is actually arestatement of Wes Hodges' posting [http://lists.netfilter.org/pipermail/netfilter/2001-May/011697.html]
on his solution to this problem.

75

http://www.docum.org/stef.coene/qos/kptd/
http://www.docum.org/stef.coene/qos/kptd/
http://lists.netfilter.org/pipermail/netfilter/2001-May/011697.html
http://lists.netfilter.org/pipermail/netfilter/2001-May/011697.html

Advanced IP Routing

dresses on the internal machine, we can use ip rule on masq- gwto select arouting table with a differ-
ent default route based upon the source | P of the response packets to clients. Below, we'll assume the
same routing tables as in the previous section (cf. Section 4.1, “Outbound traffic Using Multiple Con-
nections to the Internet”).

Herewe have aserver i sol de which needs to be accessible viatwo different public |P addresses. We'll
add an IP addresstoi sol de sothat it isreachable on 192.168.100.10 as well as 192.168.100.17. Then,
the following rules on masg- gwwill ensure that packets are rewritten and routed in order to avoid the
problem pointed out above.

Example 10.4. Multiple Internet links, inbound traffic; using iproute2 only >

[root @easqg-gwW # ip route add nat 67.17.28.10 via 192.168. 100. 10
[root @easg-gw]# ip rule add nat 67.17.28.10 from 192. 168. 100. 10 table 4
[root @easqg-gw # i p route add nat 205.254.211.17 via 192. 168. 100. 17
[root @asqg-gw # ip rule add nat 205.254.211.17 from 192. 168. 100. 17
[root @esqg-gw # ip rul e show

0: fromall |ookup Ioca

32765: from 192. 168. 100. 17 | ookup main map-to 205. 254. 211. 17
32765: from 192. 168. 100. 10 | ookup 4 map-to 67.17.28. 10

32766: fromall | ookup main

32767: fromall |ookup 253

[root @esqg-gw # ip route show table |ocal | grep “nat

nat 205.254.211.17 via 192.168. 100.17 scope host

nat 67.17.28.10 via 192.168.100.10 scope host

4.3. Using Multiple Connections to the Internet for In-
bound and Outbound Connections

5 This example makes no reference to packet filtering. If you are reading this, | assume you are competent at determining the packet filtering is-
sues. If you have doubts about what rulesto add, see Section 4, “ Stateless NAT and Packet Filtering”.

76

Chapter 11. Scripts for Managing IP

Here are some scripts which may come in handy for manipulating different features of the linux net-
working stack. If you'd like, you can get atarball [scripts/linux-ip-scripts.tar.gz] of these scriptsto take
home with you.

1. Proxy ARP Scripts

The proxy ARP script was written before the kernel supported proxy ARP natively. If you simply want
proxy ARP to work, then you need only enable it in your 2.4 kernel. If you require more control than af-
forded by the kernel proxy ARP functionality and you wish to recompile iproute2 and your kernel, you
can use the iproute2 extension, ip arp. Otherwise, you might try this script.

Example 11.1. Proxy ARP SysV initialization script

Download. [scripts/proxy-arp]

[bin/sh -
proxy-arp Set proxy-arp settings in arp cache

chkconfig: 2345 15 85

description: using the arp command line utility, populate the arp
cache with I P addresses for hosts on different nedia
whi ch share | P space.

Copyri ght (c)2002 SecurePipe, Inc. - http://ww. securepi pe. com

This programis free software; you can redistribute it and/or nodify it
under the terns of the GNU CGeneral Public License as published by the

Free Software Foundation; either version 2 of the License, or (at your
option) any |ater version.

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; w t hout even the inplied warranty of MERCHANTABI LI TY
or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU CGeneral Public License
for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software Foundati on,
Inc., 59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA

#!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
-- witten initially during 1998
2002-08-14; Martin A. Brown <mabrown@ecur epi pe. conp
- cleaned up and coment ed extensively
- joined the process parsinony bandwagon, and el i ni nated
many unnecessary calls to ifconfig and awk
#
echo "$@ >&2; }

gripe () {
{ ogripe "Fatal: $@; exit 1; }

abort (

~— —

77

scripts/linux-ip-scripts.tar.gz
scripts/linux-ip-scripts.tar.gz
scripts/proxy-arp
scripts/proxy-arp

Scripts for Managing IP

CONFI G=${ CONFI G -/ et c/ pr oxy- ar p. conf }
[-r "$CONFIG'] || abort $CONFIG is not readable

case "$1" in
start)
-- create proxy arp settings according to
table in the config file
#

grep -Ev ' *#|*$' $CONFI G | {
whi | e read | NTERFACE | PADDR ; do
[-z "$I NTERFACE" -0 -z "$I PADDR'] && conti nue
arp -s $I PADDR -i $| NTERFACE - D $I NTERFACE pub

done
}
st op)
-- clear the cache for any entries in the
configuration file
#
grep -Ev '#|"$' /etc/proxy-arp.conf | {
whi | e read | NTERFACE | PADDR ; do
[-z "$I NTERFACE" -0 -z "$I PADDR'] && conti nue
arp -d $I PADDR -i $I NTERFACE
done
}
st at us)
arp -an | grep -i perm
restart)
$0 stop

$0 start

,;)

echo "Usage: proxy-arp {start|stop|restart}"”
exit 1
esac

exit O

#
- end of proxy-arp

Example 11.2. Proxy ARP configuration file
Download. [scripts/proxy-arp.conf]
#

Proxy ARP configuration file
#

78

scripts/proxy-arp.conf
scripts/proxy-arp.conf

Scripts for Managing IP

HFHIFHFHFHHFEHFBFEHFFHFEHFFEHFEFFEHFHEHFEHFFEHFFFEHFHEHFHHHF S EHFE AR HHH

-- This is the proxy-arp configuration file. A sysVinit script
(proxy-arp) reads this configuration file and creates the
required arp table entries.

Copyri ght (c)2002 SecurePipe, Inc. - http://ww. securepi pe. com

This programis free software; you can redistribute it and/or nodify it
under the terns of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any |ater version.

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; wi t hout even the inplied warranty of MERCHANTABI LI TY
or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU CGeneral Public License
for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software Foundation
Inc., 59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA

-- file was created during 1998
2002-08-15; Martin A. Brown <mabrown@ecur epi pe. conp
- format unchanged
- added comments

-- field descriptions:
field 1 this field contains the ethernet interface on which
to advertise reachability of an IP.
field 2 this field contains the | P address for which to advertise

-- notes
- white space, lines beginning with a comment and bl ank |ines are ignored
-- exanpl es
- each exanple is conmented with an English description of the
resulting configuration
- followed by a pseudo shell code description of how to understand
what will happen
-- exanpl e #0; advertise for 10.10.15.175 on ethl
ethl 10.10.15. 175
for any arp request on ethl; do
if requested address is 10.10.15.175; then
answer arp request with our ethernet address fromethl (so
that the reqeustor sends |IP packets to us)
fi

done

-- exanple #1; advertise for 172.30.48.10 on ethO

79

Scripts for Managing IP

HHOH O H HHHHHH®

H* H*

et hO 172. 30. 48. 10
for any arp request on ethO; do

if requested address is 172.30.48.10; then

answer arp request with our ethernet address fromethl (so
that the reqeustor sends |IP packets to us)

fi
done
-- add your own configuration here

-- end /etc/proxy-arp. conf

2. NAT Scripts

The script will remove all NAT route entries and then all RPDB entries, other than the three default en-
tries and anything saying "iif 10". It will then populate the RPDB and create NAT route entries according
to the configuration file. Use this script with caution if you have customized your RPDB.

Example 11.3. Static NAT SysV initialization script

Download. [scripts/nat]

#!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

[bin/sh -
nat; start and stop network address translations using iproute2 tools

chkconfig: 345 45 55

description: iproute2 tools allow for sophisticated routing, network
address transl ation, and policy based routing. This script
general i zes static NAT mappi ngs and exceptions.

Copyri ght (c)2002 SecurePipe, Inc. - http://ww. securepi pe. com

This programis free software; you can redistribute it and/or nodify it
under the terns of the GNU CGeneral Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any |ater version

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; wi t hout even the inplied warranty of MERCHANTABI LI TY
or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU CGeneral Public License
for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software Foundation
Inc., 59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA

80

scripts/nat
scripts/nat

Scripts for Managing IP

#

#

-- witten initially, 2002-03-02; -MAB

2002-08-14; Martin A. Brown <mabrown@ecur epi pe. conp

- cleaned up and comented the code a bit

- altered the script to provide support for NAT from user-specified
net wor ks instead of assum ng that anything fromO0/0 should be

transl| at ed

2002-08-30; Martin A Brown <mabrown@ecur epi pe. conp

- add configuration setting to flush all NAT rules and routes before
installing new rul es and routes

- add a ./nat flush option

2003-01-31; Matthew Cal | away <matt @ecur epi pe. conpr

- add validation routines

2003-02-05; Martin A. Brown <mabrown@ecur epi pe. conp

- oversight identified by Shawn Bal estracci; not all NAT rules

were flushed--we were | ooking only for map-to, not the excl ude

rules as well

gripe () { echo "$@ >&2; }

abort () { ogripe "Fatal: $@; exit 1; }

CONFI G=${ CONFI G -/ et c/ sysconfi g/ static-nat}

[-r "$CONFIG'] || abort $CONFIG is not readable

function islIP () {
-- this function validates a variable as a valid | P address or Cl DR network
#
VAR=$1

echo ${VAR} | grep -Eg \
"[l:digit:]1{1,3}\.[[:digit:]1{1,3}\.[[:digit:]11{1,3}\.[[:digit:]11{1,3}(|[[:d

[$?2 -eq 0] & return O

return 1
}
function isINT () {
-- this function validates a variable as a valid integer
#
VAR=$1

echo ${VAR} | grep -Eg \
"[[:digit:]]{1,}"

[$?2 -eq 0] & return O
return 1

}

function validate () {
grep -Ev '~#|"$' $CONFIG | while read NET NAT REAL NPRI O RPRI O EXCLUDE ; do
Fields 5 and 6 are opti onal
if [-z "$NET" -0 -z "$NAT" -0 -z "$REAL" -0 -z "$NPRIO"]; then
echo Syntax error: Mssing field: $NET $NAT $REAL $NPRI O $RPRI O $EXCLUDE

81

Scripts for Managing IP

}

exit 1
fi
if [-n"$RPRIO" -a -z "$EXCLUDE"]; then
echo Syntax error: $NET $NAT $REAL $NPRI O $RPRI O $EXCLUDE
echo Field 6 nmust be used with field 5
exit 1
fi
for ITEMin $NET $NAT $REAL $EXCLUDE ; do
islP $I TEM
if [$2 -ne 0]; then
echo "In line:"
echo $NET $NAT $REAL $NPRI O $RPRI O $EXCLUDE
echo $ITEMis not a valid IP or ClIDR bl ock
exit 1
fi
done
for ITEMin $NPRI O $RPRI G do
i sI NT $I TEM
if [$2 -ne 0]; then
echo "In line:"
echo $NET $NAT $REAL $NPRI O $RPRI O $EXCLUDE
echo $ITEMis not an integer
exit 1
fi
done
done

function flush () {

}

-- this function should renmove all NAT rul es and routes

#

-- renmove all of the rules, except the three builtins and any | PSec
rule; -MAB

#

ip rule show | grep -Ev '~(0| 32766| 32767):|iif lo" \
| while read PRI O NATRULE; do
iprule del prio ${PRIO®%6*} $(echo $NATRULE | sed 's|all|0/0]")
done
-- renmove all of the rules
#
ip route show table local | grep “nat | while read NATROUTE; do
ip route del $NATROUTE
done
ip route flush cache;

function nat () {

grep -Ev 'A#|~$' $CONFIG | while read NET NAT REAL NPRI O RPRI O EXCLUDE ;

<-- set up the route for the NAT IP to turn it into the real IP
#
ip route add from $NET nat $NAT via ${REALY4 *}
[82" -eq "0"] ||\
gripe cnd failed: ip route add nat $NAT via ${ REALY%4 *}

82

do

Scripts for Managing IP

<-- establish the mninumrouting policy database;

this is required so that the outbound packet gets

rewitten to be fromthe IP which sent us the packet
#
i
[

p rule add to $NET nat ${NAT%4 *} from $REAL prio $NPRI O
"$?" -eq "0"] || \
gripe cnd failed: ip rule add nat ${NAT%4*} from $REAL prio $NPRI O

<-- determine if the user has supplied networks or address to be
excl uded from the $NETwor k address above
#
[! -z "$RPRIO" | & [! -z "$EXCLUDE"]| && {
for NETWORK in $EXCLUDE ; do
iprule add from $REAL to $NETWORK prio $RPRI O
["$?" -eq "0"] || \
gripe cnd failed: ip rule add from $REAL to $NETWORK pri o $RPRI O
done;

}
done;
<-- W don't want to forget to flush the cache, or the user wll
sit around wondering for the next few m nutes why the NAT rul es
aren't working. After flushing the cache, the NAT rules wll
wor k right away.
#

ip route flush cache;

}

see how we were call ed
case "$1" in

esac

#
-

start) validate &% nat
stop) flush

restart) $0 stop; $0 start

status) ip route show table |ocal | grep “nat
ip rule show | grep map-to

*) echo "usage: nat {start|stop|restart|status}"”

end of nat

Example 11.4. Static NAT configuration file

Download. [scripts/static-nat]

83

scripts/static-nat
scripts/static-nat

Scripts for Managing IP

HFHIFHFHFHHFEHFBFEHFFHFEHFFEHFEFFEHFHEHFEHFFEHFFFEHFHEHFHHHF S EHFE AR HHH

NAT configuration file

-- This file is used to configure NAT routes and rul es
via the iproute2 package. A sysV init script (nat)
uses this file to set up the routes/rules.

Copyri ght (c)2002 SecurePipe, Inc. - http://ww. securepi pe. com

This programis free software; you can redistribute it and/or nodify it
under the terns of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any |ater version.

This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; wi t hout even the inplied warranty of MERCHANTABI LI TY
or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU CGeneral Public License
for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software Foundation
Inc., 59 Tenple Place - Suite 330, Boston, MA 02111-1307, USA

-- file created by Matt Call anay <matt @ecurepi pe. conp
2002-03-01; Martin A Brown <mabrown@ecur epi pe. conp
- first major revision; added coments
2002-08-14; Martin A. Brown <mabrown@ecur epi pe. conp
- cleaned up the file; added copi ous comenti ng and exanpl es
- provided support for NAT only from specified networks (backwards
i nconpatibility added here; benefit is huge flexibility gain)
2003-02-10; Martin A. Brown <mabrown@ecur epi pe. conp
- exanpl e #6 added. Thanks for identification and description of
this scenario, and the exanple in the format of the other
exanpl es go to Shawn Bal estracci <shawnb@ecur epi pe. conp

-- field descriptions:

field 1 this field contains a network address. Any packets from
this network will be translated according to fields tw and
three, with the exception of any networks specified in fields
6 and hi gher

field 2 contains the NAT IP, the IP that only exists as a publicly
reachable IP for an internal host

field 3 contains the real IP of the machine, usually an internal IP

field 4 contains the priority for the NAT rule itself in the RPDB

field 5 contains the priority for the routing rule in the RPDB. In
order for the internal networks to reach the real IP of the
server/host, this priority nust be higher than the priority
for the NAT rule. **|ower nunbers == higher priority**

field 6+ contains a whitespace separated |ist of networks which
shoul d be able to reach the real IP (field 2) directly.
The entries into the rule policy database (RPDB) for these
networks wi Il prevent packets fromreal-1P to dest-network
frombeing rewitten with the NAT I P as the source IP.

84

Scripts for Managing IP

HFHIFHFHFHHFEHFBFEHFFHFEHFFEHFEFFEHFHEHFEHFFEHFFFEHFHEHFHHHF S EHFE AR HHH

Net wor ks speci fied here shoul d be subnets of the network
specified in field 1

-- notes

- white space, lines beginning with a comment and bl ank |ines are ignored
field 5 shoul d al ways be a | ower nunber (higher priority) than field 4
- fields 5 and 6+ are opti onal

- fields 5 and 6+ nmust be used together, if used at al

-- exanpl es

- each exanmple is conmented with an English description of the network
address translati on which will occur

- followed by a pseudo shell code description of how to understand
exactly what the NAT will | ook Iike

-- exanple #1; NAT a single IP from anywhere
0/0 10.10.0.14 172.31.254.1 1000

for packets from any address (0/0);
if destination_address is 10.10.0.14 ; then
rewite destination address from 10.10.0.14 to 172.31.254.1
fi
done

-- exanple #2; NAT an entire network (from anywhere)
0/0 10.13.0.0/16 172.17.0.0/16 1000

for packets from any address (0/0); do
if destination_address is in 10.13.0.0/16 ; then
rewite destination address from 10.13.x.x to 172.17.x.X
fi
done

-- exanple #3; NAT an entire network, but only froma specified nework
10.10.0.0/16 10.15.0.0/24 192.168.0.0/24 1000
if packet is from 10.10.0.0/16 ; then

if destination_address is in 10.15.0.0/24 ; then

rewite destination address from 10.15.0.x to 192. 168. 0. x
fi

-- exanple #4; NAT an entire network, but only froma specified nework;
make an exception for certain |IP ranges
10.10.0.0/16 10.15.2.0/24 192.168.2.0/24 1000 990 10.10.38.0/24

if packet is from 10.10.0.0/16 and not from 10.10.38.0/24 ; then
if destination_address is in 10.15.2.0/24 ; then

85

Scripts for Managing IP

HHIFHFHFHHEHFHFHFHHFHFHEHFHHHF R

H* H*

rewite destination address from 10.15.2.x to 192. 168. 2. x
fi
fi

-- exanple #5; NAT a single IP from anywhere; don't NAT if from specified
| P ranges

0/0 10.74.1.8 192.168.73.15 1000 990 192.168.71.0/24 192.168.70.0/24

for packets from any address except 192.168.71.0/24 and 192.168. 70. 0/ 24; do
if destination_address is 10.74.1.8 ; then
rewite destination address from 10.74.1.8 to 192.168. 73. 15
fi
done

-- exanple #6; NAT to the sane IP differently based on the source
network I P ranges

0/0 10.74.1.8 192. 168. 73. 15 1000
192.168.71.0/ 24 192.168.71.15 192.168.73.15 400
192.168.70. 0/ 24 192.168.71.15 192.168.73.15 400

N. B., the RPDB nust traverse lines two and three first, hence the higher
priority. |If the source network is not 192.168.{71, 70}. 0/ 24 t hen
the we'll nmeet the next entry, 1000.

N.B., the third entry in this exanple will cause an RTNETLINK: file
exi sts error, because there is already an entry in the |oca
routing table for 192.168.71.15 --NAT--> 192.168. 73. 15. Known bug.

for packets from 192.168. 71.0/24 or 192.168. 70. 0/ 24; do
if destination_address is 192.168.71.15 ; then
rewite destination address from 192.168. 71. 15 to 192. 168. 73. 15
fi
done

for packets from any address except 192.168.71.0/24 and 192.168. 70. 0/ 24; do
if destination_address is 10.74.1.8 ; then
rewite destination address from 10.74.1.8 to 192.168. 73. 15
fi
done

-- add your own configuration here

-- end /etc/sysconfig/static-nat

86

Chapter 12. Troubleshooting

Invariably, troubles and misconfigurations creep into networks. New devices get connected and added to
anetwork. Old devices are removed, and something seemingly unrelated breaks. Troubleshooting is re-
aly atest in discerning patterns.

My favored method for solving problems s to start with the simplest elements, verifying correct oper-
ation and proceeding to the next layer or element until | have isolated the problem element. If you are
lucky, you'll know from a symptom where the problem is likely to be, but more often, you'll have to start
at the bottom of the networking hierarchy, and verify each other layer.

1. Introduction to Troubleshooting

Thefirst thing to consider whenever somebody reports a strange networking problem is any recent
change. What has changed recently in the network? Have any new machines been added? I's the user us-
ing a service which was recently decommissioned? Did a machine (firewall, mail server, DNS resolver)
recently reboot? Did all of the services restart?

2. Troubleshooting at the Ethernet Layer

3. Troubleshooting at the IP Layer

4. Handling and Diagnosing Routing Problems
5. Identifying Problems with TCP Sessions

6. DNS Troubleshooting

87

Part Ill. Appendices and Reference

The content in this part isintended to function as supporting reference material for the above chapters. Following
you will find areference for many common linux command line utilities as well as the example network map and

network description. A set of linksto external resources, and a troubleshooting guide round out the content in this
part of the document.

Table of Contents

A. An Example Network and DesCriptionccoeuuieiiiiiieiiiie e 92
1. Example Network Map and General NOESuuiiiiiiiiieiiiiiieece e 92
2. Example Network Addressing Chartsoceeueiieeiiiiiee e 94

B. EtherNet LaYEr TOOISciiiiieeeiiii ettt ettt ettt e et e e e et e e e e et e e e enbe e eeees 96
T T o PP 96
- [o1 o PO PO PRSPPI 97
B INK e 98

3.1. Displaying link layer characteristics with ip link Showccciiiiiiiiniiinnnnn. 99
3.2. Changing link layer characteristics with ip link Setccoovviiiiiiiiiis 99
3.3. Deactivating a device With ip 1INk SEt ... 100
3.4. Activating adevice With ip 1INk SBt ... 101
3.5. Using ip link set to change the MTUiiiiiiiiiiiiiiece e 102
3.6. Changing the device name with ip link set ..o, 102
3.7. Changing hardware or Ethernet broadcast address withip link set 102
A 0P NEIGNDOT .. e 103
B MIT-TO0L <. 106
C. IP Address Man@QEMENLueeiietneeieii et e e ettt e et e et e et e e et e e e eana s 108
L T CONTIG et 108
1.1. Displaying interface information with ifconfigccocviiieiiiii 108
1.2. Bringing down an interface with ifConfig ..., 109
1.3. Bringing up an interface with ifconfig ..o, 109
1.4. Reading ifCONfig OULPULcovuniiiiii i 110
1.5. Changing MTU With ifCoNfigoeviiiiiiiii e 110
1.6. Changing device flags with ifconfigcooveiiiiiiiii e, 111
1.7. General remarks about ifCONTIQccuvuiiiiiiiiii e 112
2. 0P BOAIESS ..t 112
2.1. Displaying interface information with ip address SNOWc.ceeveviviieeiennnnnnn. 112
2.2. Using ip address add to configure IP address informationccccceeeeevnnnnen. 113
2.3. Using ip address del to remove IP addresses from an interfacecoeeeeee. 114
2.4. Removing all IP address information from an interface with ip addressflush 115
2.5, CONCIUSION ..ttt ettt ettt e et e et e e e et e e e e eba s 115
D. IP ROULE MaNAGEMENTiiiiiiiieii e et e r e e e e enes 116
T o TP P TPTPPT 116
1.1. Displaying the routing table With routeoooeiiiiii e, 116
1.2. ReadiNg rOULE'S QUEPULcevvuneiiiii e ettt ettt e e 117
1.3. Using route to display the routing Cacheooeviviiiiiiiiiiec e 118
1.4. Creating a static route with route addoooviiiiiiiiiiii e 119
1.5. Creating a default route with route add defaultccooeviiiiiiiiin, 121
1.6. Removing routes With route delcouiiiiiiiiiiii e 121
2. T TOULE Lottt 123
2.1. Displaying arouting table with ip route SNOWoveviiiiiieiiiiiiieeeii e, 123
2.2. Displaying the routing cache with ip route show cacheccoooiiiinns 125
2.3. Using ip route add to populate arouting tablecccooviieiiiiiiiiiiees 127
2.4. Adding a default route with ip route add defaultccooeviiiiiiiiiiiiinnennn. 128
2.5. Setting up NAT withip route add Natc.ovveiiiiiiiii e 128
2.6. Removing routes with ip route delcoooiiiiiiiiii e 130
2.7. Altering existing routes with ip route changeccooevviiiiiiii e, 130
2.8. Programmatically fetching route information with ip routegetc..ccceeeeenen. 131
2.9. Clearing routing tables with ip route flushccoooiiiiiiii e, 131
2.10. ip route flush CaCheuiii e 132
2.11. Summary of the USe Of IP FOULEccoeviiiiiii e 133

89

Appendices and Reference

G T o T 1] = 133
TNt O T o T U= o PPN 133

3.2. Displaying the RPDB with ip rule Showcocoiiiiiiiiii e 133

3.3. Adding aruleto the RPDB withip ruleaddcccoeviiiiiiiiiiiiee e, 134
34.0p rule add Natiiiiiiii e 135

B P TUIB AEl e e 136

E. TUNNEIS @M VPINS ... e e e e e e e e b 137
1. Lightweight encrypted tunnel wWith CIPEccooiiiiiiii e 137
2. GRE tunnels with ip tUNNEL ... e e 137
3. All manner of tuNNEIS WIth SSN ... 137
4. IPSec implementation Via FTEES/WANoouiiiiiiii e 137
5. IPSec implementation in the KErnel ..o, 137
LT i I PRSPPI 137
F. Sockets; Servers and ClIENESuiiiiiiieiiii e e et e e e e eaaens 138
TR = 1 = PRSP 138
P2 £ o PSPPI 138
o o | PP TPTPT 139
L (o o Tox L= o | Pt 140
LT (] 1= (o PP 140
LS e: 0 Y= PP PPPRN 141
8 = o L1 PP 141
LT B T-"o a0 1S 1 o2l 1o o) =N 143
O o1 o SOt 143
1.1. Using ping to test reachabilityccciiiiiiiiiii e 144

1.2. USiNg ping tO StreSS @ NEIWOTKvvvniiiiieiie e e 146

1.3. Recording a network route With pingccoooiiiiiiiii e, 146

1.4. Setting the TTL 0N @ Ping PaCKELccvuiiiiieiiiccie e e 147

1.5. Setting ToS for adiagnOStiC PINGcvvveiiiieiiieee e e 148

1.6. Specifying a source address fOr PiNgcoeveeiiiiiiiieii e 148

1.7. Summary on the USE Of PING ..uuiivniiiii e e 149

A - 10 o U =S TTP TP RPPPIN 149
2 I = T o I 4= Torc: o 0| = 149

2.2. Telling tracer oute to use ICMP echo request instead of UDPcccvvven. 150

2.3. Setting TOS With traCerOULEoiviniiiii i e 150

2.4. Summary on the Use Of traCerOULEoviiiiiiiii e 150

G T 1 1 PP 150
N 0 I = | PPN 151
4.1. Displaying socket status With NEtStatcccovvviiiiiiiiiiiiii e, 151

4.2. Displaying the main routing table with netstatccococciiiiiiiiinie e, 154

4.3. Displaying network interface statistics with netstat command 154

4.4. Displaying network stack statistics with netstatccoocoviiiiiiiiiiiine, 155

4.5. Displaying the masquerading table with netstatcco.ccooiiiiiiiniin e, 155

LI oo o U3 o o TSP 155
5.1. Using tcpdump t0 VIEW ARP MESSA0ES ...ucvvvneiiiieiieeeiieeeeee e e e e e eaneeae 155

5.2. Using tcpdump to see ICMP unreachable messagesccovevvvieiiiiiiiiiieciieeennnn, 156

5.3. Using tcpdump to watch TCP SESSIONSuuvviiiiiiieeii e e e 157

5.4. Reading and writing tcpdump datac.ooovviiiiiiiici e, 157

5.5. Understanding fragmentation as reported by tcpdumpccooeeviiiiiiiiinenns 158

5.6. Other options to the tcpdump commandccocoiviiiiiiiiii e, 158

L3 o o) 11 PP 158
28 o o = o] = 158
L YT o= | Y/ 159
1. ipcalc and other IP addressing CalCUIBIONSvivvneiiiiciie e e 159
2. Some general remarks about iproute2 t00ISvevviiiiiiieiiii e 159

90

Appendices and Reference

3. Brief introduction t0 SYSCEvueiiie i 160
[. LiNKS t0 OtNEI RESOUICESiiiiiiie ettt e e et e e et e e e e et e e e e sea s 161
1. Links tO DOCUMENEALION ...evevvieeiiii et e et e et e et e e et s e e e et s e e e et e e e eeaanaeeeees 161
1.1. Linux Networking Introduction and Overview Materialccccoeveviiieiinnennnnn. 161

1.2. Linux Security and NEtWOrk SECUNLYcccuiviiiiiiiiieiie e 161

1.3. General |P Networking RESOUICEScevuuiiiiiieiiiieee e e e e 161

1.4. Masquerading tOPICSviuuieiii e e e e e e e e e e e e r s 162

1.5. Network Address Tranglationcc.uuiioiiiiiiioiiiii e 162

1.6. Iprout€2 dOCUMENEALIONccvuieiiieeiie e e e e e e e e e e e e e et e e e e eeanns 163

1.7, NEIEr RESOUICES ...vvueiiiiiie ettt et e et e e e e aaa e eaeees 163

1.8. IPChAINS RESOUICESiiviieii e e e e e e aanas 163

1.9, IPfWAAM RESOUICEScvuieiiieiiii e ee e e e e e e e e e e e e e e e et e e et e e eanaas 164

1.10. General Systems REFEIENCESc.vuiiiiieiii e 164

00 R = T o T 164

122, Traffic CONLIOl couveniiieii e e s 164

I T 1 7 Y U o 165

1.14. Miscellaneous LinUX [P RESOUICESccuuuiiiiiiieeiiii et eei e eeaaens 165

2. LINKS 10 SOMtWEIE ...oeeveieieei ettt e et e e e et e e e aa e e e eaaes 166
2.1, BaSIC ULHITIES .uuvuiieeeiiiieiiii e e e e e e e e e e aanaas 166

2.2. Virtual Private Networking SOftWarec.ooevviiiiiiiiiie e 166

2.3. Traffic Control queueing disciplines and command linetoolsccoeevvveeennnnns 167

2.4. Interfaces to lower 1ayer t00ISoeiiiiiiiieiie e 167

2.5. Packet sniffing and diagnostiC t00IScccvuiviiiiiiiicii e, 167

J. GNU Free Documentation LICENSEuuiiiiiiieiiiii ettt e e et e e e e e e eaens 169
I N 11T 169
2. APPLICABILITY AND DEFINITIONS ...cotiiitiiiiieeeeeee e eeen e e e e e e 169
3. VERBATIM COPYINGuiiiiiiiiiiiiiiie e e e et e e et a e e e e e e e aaaat s e s e e e aaeennennnas 170
4. COPYING IN QUANTITY eitiiiiiie oottt e et e e e e et s e e e e e e e e e annna e e e e e e 170
5. MODIFICATIONS ..ottt ettt e e e et e e e e e e e e e et rr e e e e e e aaersa e eeas 171
6. COMBINING DOCUMENTSotttiiiiiieeiieeiiie e s e e e e e et a e e e e e e aeaana s e e e e e eaeannnnnnns 172
7. COLLECTIONS OF DOCUMENTScoiitiiiiiieeeeeeeeeiiiee e e e et ettt e e e a e e ananan e e 173
8. AGGREGATION WITH INDEPENDENT WORKSccooeiiiiiiiiiiie e 173
9. TRANSLATION .oiiiiiiiii ittt e e et e e e e e e e e et r e e e e eeeaessna s 173
0T I Y 1 2 I 173
11. FUTURE REVISIONS OF THIS LICENSEovviiiiiieiiieicin e e e 174
12. ADDENDUM: How to use this License for your doCUmMeNtsccoeeevneevinieiinnennnnnns 174

91

Appendix A. An Example Network and
Description

1. Example Network Map and General Notes

The below network map is afictiona network. This network should provide examples of several of the
common functions of alinux box in networking situations. The hostnames used in the documentation are
taken from this network map. Where practical, | have tried to simulate real-world situations throughout
the documentation, to ease the practical application of the concepts.

92

An Example Network and Description

Example Net

To ISP

wan()

cthl

ethO
[wan—gw]/b NS /2/
205.254.211.0/24

eth() 192.168.99.0/24
[tI'l stan hub/switch

8

isdn—router

ISDN

branch—router

eth0 CB
[morgan J/_Z/ hub/switch
192.168.98.0/24

eth() network interface

" i
r e ‘l j [T R, S e

An Example Network and Description

Because this guide focusses on linux networking, | have omitted discussion of the ISDN routers and
unless relevant, the layer 2 devices (hubs and switches). The remaining hosts on the example network
can be broken into three main categories. single-homed hosts (servers and workstations), masguerading
(cf. NAT) routers, and public routers. For those viewing the above netmap from a security perspective,
wan- gwand masg- gwwould both run packet filters (at least), which turns the network into a tradition-
al screened-subnet firewall.

The LAN shown above is acommon |eaf-network scenario for business offices. Frequently, there are
one or two machines on a public network segment, a masquerading firewall, and one or more networks
behind the masguerading firewall. Please do not consider this example network the only way to inter-
connect devices. The above is one method of designing a network--there are many practical issuesto
weigh in network design. | am deliberately skirting the issue of network design here and proposing an
example network similar to or a superset of acommonly found network design.

Itisrarefor abusinesswhich is not an ISP to own a class C sized network today, but | have nonetheless
chosen aclass C sized public network as our fictitious company's network.

2. Example Network Addressing Charts

In addition to the network map above, you may find the following network address and host addressin-
formation handy as you read through the various examples and documentation based on this fictional
network.

Table A.1. Example Network; Network Addressing

network address function
205.254.211.0/24 public | SP-allocated network
192.168.100.0/24 internal server network
192.168.99.0/24 main office desktop network
192.168.98.0/24 branch office desktop network

Host addressing information is summarized in this table. follows.

Table A.2. Example Network; Host Addressing

hostname interface | P address MAC address
i sol de eth0 192.168.100.17/24 00:80:¢8:e8:4b:8e
tristan eth0 192.168.99.35/24 00:80:c8:f8:4a:51
nor gan eth0 192.168.98.82/24 00:80:c8:f8:4a:53
masqg- gw ethO 192.168.100.254/24 00:80:¢8:f8:5¢:71
masq- gw ethl 205.254.211.179/24 00:80:¢8:f8:5¢: 72
nmasq- gw eth2 192.168.99.254/24 00:80:c8:f8:5¢:73
masqg- gw eth3 192.168.100.2/30 00:80:¢8:f8:5¢c:74
wan- gw eth0 205.254.211.254/24 [unknown]
wan- gw wan0 205.254.209.73/30 [n/a]
i sdn-router (Ethernet) 192.168.99.1/24 00:¢0:7b:45:6a:39
branch-router (Ethernet) 192.168.98.254/24 00:¢c0:7h:37:af:91
service-router (Ethernet) 192.168.100.1/24 00:¢0:7b:7d:00:c8

94

An Example Network and Description

| have referred liberally to this example network throughout this documentation. Any example com-
mands in the documentation assume the network configuration as shown on this network map.

Additionally, hosts which are not part of this (fictional) network but appear in the documentation will
appear under the namesr eal - server andr eal - cl i ent . This convention exists simply to disam-
biguate real-world examples from the machines in the fictional network.

95

Appendix B. Ethernet Layer Tools

The section here will cover tools which manipulate, display characteristics of or probe Ethernet devices.
Because Ethernet is one of the most available and widely spread networking mediain use today, well
concentrate on Ethernet rather than other link layer protocols.

Aswith any networking stack, the lower layers must be functioning properly in order for the higher lay-
er protocols to operate. The tools covered in this section will provide the resources you need to verify
the proper operation of your linux machine in an Ethernet environment.

Y ou probably knew before reading this that you can look at the link light on your Ethernet switch/hub
and the link light on your Ethernet card to verify a good connection. Now you can use mii-tool to ask
the Ethernet driver if it agrees. Once you have verified a good media connection, you may want to set
other link layer characteristics on your Ethernet device. For this, ip link is the perfect tool.

To seeif anybody is using an | P address already on the Ethernet to which you are connecting, you can
use arping and if you want to play with the arp tables, the arp command is there to help you accomplish
your objective.

1. arp

An often overlooked tool, arp is used to view and manipulate the entriesin the arp table. See Sec-
tion 1.2, “The ARP cache” for afuller discussion of the arp table.

The most common uses for arp are to add an address for which to proxy arp, delete an address from the
arp table or view the arp table itself.

In the simplest invocation, you simply want to see the current state of the arp table. Invoking arp with
no options will provide you exactly the information you need. Typically, you may not trust DNS (or

may not wish to wait for the DNS lookups), and you may wish to specify the arp table on a particular in-
terface.

Example B.1. Displaying the arp tablewith arp

[root @masg-gwW # arp -n -i eth3

Addr ess HW ype HWAddress Fl ags Mask |face

192. 168. 100. 1 et her 00: CO: 7B: 7D: 00: C8 C et h3
[root @asqg-gw # arp -n -i ethO

Addr ess HW ype HWAddress Fl ags Mask |face

192. 168. 100. 17 et her 00: 80: C8: E8: 4B: 8E C et hO

[root @masg-gw # arp -a -n -i ethO
? (192.168.100.17) at 00:80: C8: E8: 4B: 8E [ether] on ethO

The MAC address in the third column is aways a six part hexadecimal number. In practice, the MAC
address (also known as the hardware address or the Ethernet address) is not normally needed for the ma-
jority of troubleshooting problems, however knowing how to retrieve the MAC address can help when
tracking down problemsin a network L

L1 know of one instance where some devices which used DHCP to join the network were suddenly and apparently inexplicably receiving ad-
dresses in an unexpected netblock. After some head-scratching and judicious use of tcpdump to record the Ethernet address of the DHCP serv-
er giving out the bogus I P information, the administrator was able to track down a device through the switch to a port on the LAN. It turned out

96

Ethernet Layer Tools

The arp command can also force a permament entry into the arp table. Let'slook at an unusual network-
ing need. Infrequently, a need arises to split a network into two parts, each part with the same network
address and netmask. The router which joins the two networks is connected to both sets of media. See
Section 3, “Breaking a network in two with proxy ARP” for more detail on when and how to do this.

The command to add arp table entries makes a static entry in the arp table. Thisis not recommended
practice, and is probably only necessary in strange, experimental, hybrid, or pseudo-bridging situations.

Example B.2. Adding arp table entrieswith arp

[root @masqg-gw # arp -s 192.168. 100.17 -i eth3 -D eth3 pub
[root @masqg-gw# arp -n -i eth3

Addr ess HW ype HWaddress Fl ags Mask |face
192. 168. 100. 1 et her 00: CO: 7B: 7D: 00: C8 C et h3
192. 168. 100. 17 * * MP et h3

After inserting an entry into the arp table on eth3, we will now respond for ARP requests on eth3 for the
IP192.168.100.17. If theser vi ce- r out er hasa packet bound for 192.168.100.17, it will generate
an ARP request to which we will respond with the Ethernet address of our eth3 interface.

Moments after you have added this arp table entry, you realize that you really do not wish ser -

vi ce-rout er andi sol de to exchange any IP packets. Thereis no reason for thei sol de toinitiate
atelnet sessionwith ser vi ce- r out er and correspondingly, there are no servicesoni sol de which
should be accessible from the router.

Fortunately, it's quite easy to remove the entry.

Example B.3. Deleting arp tableentrieswith arp

[root @masqg-gw] # arp -i eth3 -d 192. 168. 100. 17

[root @asqg-gwW# arp -n -i eth3

Addr ess HW ype HWaddress Fl ags Mask |face

192. 168. 100. 1 et her 00: Q0: 7B: 7D: 00: C8 C et h3

arp isasmall utility, but one which can prove extremely handy. One minor annoyance with the arp util-
ity is option handling. Options seem to be handled differently based on order. If in doubt, try specifying
the action as the first option.

2. arping

An amost unknown command (mostly because it is not frequently necessary), the ar ping utility per-
forms an action similar to ping, but at the Ethernet layer. Where ping tests the reachability of an IP ad-
dress, ar ping reports the reachability and round-trip time of an |P address hosted on the local network.

There are several modes of operation for this utility. Under normal operation, ar ping displays the Ether-
net and | P address of the target as well as the time elapsed between the arp request and the arp reply.

to be atiny (4-port) hub with an embedded DHCP server which was intended for home use! The knowledge of the Ethernet address of the rogue
DHCP server was the key to physically locating the device.

97

Ethernet Layer Tools

Example B.4. Displaying reachability of an | P on the local Ethernet with arping

[root @masqg-gw # arping -1 ethO -c 2 192.168. 100. 17

ARPI NG 192. 168. 100. 17 from 192. 168. 100. 254 et hO

Uni cast reply from 192. 168. 100. 17 [00: 80: C3: E8: 4B: 8E] 8. 419ns
Uni cast reply from 192. 168. 100. 17 [00: 80: C8: E8: 4B: 8E] 2. 095ns
Sent 2 probes (1 broadcast(s))

Recei ved 2 response(s)

Other options to the arping utility include the ability to send a broadcast arp using the -U option and the
ability to send a gratuitous reply using the -A option. A kernel with support for non-local bind can be
used with arping for the nefarious purpose of wreaking havoc on an otherwise properly configured Eth-
ernet. By performing gratuitous arp and broadcasting incorrect arp information, arp tablesin poorly de-
signed P stacks can become quite confused.

arping can detect if an |P addressis currently in use on an Ethernet. Called duplicate address detection,
this use of arping isincreasingly common in networking scripts.

For a practical example, let's assume alaptop named di et ri ch isnormally connected to a home net-
work with the same IP addressast r i st an of our main office network. In the boot scripts, di et ri ch
might make good use of ar ping by testing reachability of the IP it wants to use before bringing up the IP

layer.

Example B.5. Duplicate Address Detection with arping

[root@lietrich]# arping -D -q -1 ethO -c 2 192. 168. 99. 35
[root @i etrich]# echo $?

1

[root@lietrich]# arping -D -q -1 ethO -c 2 192. 168. 99. 36
[root @i etrich]# echo $?

0

First, di et ri ch testsreachability of its preferred 1P (192.168.99.35). Because the |IP addressisin use
bytristan,dietrich receivesaresponse. Any response by adevice on the Ethernet indicating that
an IP addressisin use will cause the ar ping command to exit with a non-zero exit code (specificaly,
exit code 1).

Note, that the Ethernet device must already be in an UP state (see Section 3, “ip link™). If the Ethernet

device has not been brought up, the ar ping utility will exit with a non-zero exit code (specifically, exit
code 2).

link

Part of the iproute2 suite, ip link provides the ability to display link layer information, activate an inter-
face, deactivate an interface, change link layer state flags, change MTU, the name of the interface, and
even the hardware and Ethernet broadcast address.

Theip link tool providesthe following two verbs: ip link show and ip link set.

98

Ethernet Layer Tools

3.1. Displaying link layer characteristics with ip link
show

To display link layer information, ip link show will fetch characteristics of the link layer devices cur-
rently available. Any networking device which has a driver loaded can be classified as an available de-
vice. It isimmaterial to ip link whether the device isin use by any higher layer protocols (e.g., IP). You
can specify which device you want to know more about with the dev <interface> option.

ExampleB.6. Using ip link show

[root @ristan]# ip |link show

1: lo: <LOOPBACK, UP> ntu 16436 qdi sc noqueue
I i nk/ | oopback 00: 00: 00: 00: 00: 00 brd 00: 00: 00: 00: 00: 00

2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

Here we see that the only deviceswith driversloaded ont ri st an arelo and ethO. Note, aswith ip ad-
dress show, theip utility will sequentially number the output. These numbers are dynamically calcualt-
ed, so should not be used to refer to the interfaces. It isfar better (and more intuitive) to refer to the in-
terfaces by name.

For each device, two lineswill summarize the link state and characteristics. If you are familiar with if-
config output, you should notice that these two lines are aterse summary of lines 1 and 3 of each ifcon-
fig device entry.

The flags here are the same flags reported by ifconfig, although by contrast to ifconfig, ip link show
seems to report the state of the device flags accurately.

Let'stake a brief tour of the ip link show output. Line one summarizes the current name of the device,
the flags set on the device, the maximum transmission unit (MTU) the active queueing mechanism (if
any), and the queue size if there is a queue present. The second line will aways indicate the type of link
layer in use on the device, and link layer specific information. For Ethernet, the common case, the cur-
rent hardware address and Ethernet broadcast address will be displayed.

3.2. Changing link layer characteristics with ip link set

Frankly, with the exception of ip link set up and ip link set down | have not found need to use theip
link set command with any of the toggle flags Regardless, here's an example of the proper operation
of the utility. Paranoid network administrators or those who wish to map Ethernet addresses manually
should take special note of theip link set arp off command.

Example B.7. Using ip link set to change device flags

[root@ristan]# ip link set dev ethO prom sc on

[root@ristan]# ip |link show dev et hO

2: ethO: <BROADCAST, MULTI CAST, PROM SC, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@ristan]# ip link set dev ethO multicast off prom sc off

[root@ristan]# ip |link show dev et hO

2: ethO: <BROADCAST, UP> mtu 1500 qdi sc pfifo_fast glen 100

99

Ethernet Layer Tools

i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
[root@ristan]# ip link set arp off
Not enough of information: "dev" argument is required.
[root@ristan]# ip link set arp off dev ethO
[root@ristan]# ip |link show dev et hO
2: ethO: <BROADCAST, NOARP, UP> ntu 1500 gdi sc pfifo_fast qlen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
[root@nclitic root]# ip link set dev ethO arp on
[root@ristan root]# ip |link show dev et hO
2: ethO: <BROADCAST, UP> mtu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

Any of the below flags are valid on any device.

TableB.1. ip link link layer device states

Flag Possible States

arp on | off
promisc on | off
almulti on | off
multicast on | off
dynamic on | off

Users who would like more information about flags on link layer devices and their meanings should re-
fer to Alexey Kuznetsov's excellent iproute2 reference. See the Section 1.6, “iproute2 documentation”
for further links.

3.3. Deactivating a device with ip link set

In the same way that using the tool ifconfig <interface> down can summarily stop networking, ip link
set dev <interface> down will have a number of side effects for higher networking layers which are
bound to this device.

Let'slook at the side effects of using ip link to bring an interface down.

Example B.8. Deactivating a link layer devicewith ip link set

[root@ristan]# ip |link show dev et hO
2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
[root @ristan]# ip route show
192. 168.99.0/ 24 dev ethO proto kernel scope link src 192.168.99. 35
127.0.0.0/8 dev I o scope |ink
default via 192.168.99. 254 dev et hO
[root@ristan]# ip link set dev ethO down
[root@ristan]# ip address show dev et hO
2: ethO: <BROADCAST, MULTI CAST> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal ethO
[root@ristan]# ip route show

100

Ethernet Layer Tools

127.0.0.0/8 dev I o scope |ink

In our first command, we are able to determine that the ethO isin an UP state. Naturally, ip link will not
tell usif thereisan IP bound to the device (use ip addr ess to answer this question). Let's assume that
tri st an wasoperating normally on 192.168.199.35. If so, the routing table will appear exactly isit
appears in Example B.8, “Deactivating alink layer device with ip link set”.

Now when we down the link layer on ethO, we'll see that there is now no longer aflag UPin the link
layer output of ip address. More interesting, though, all of our |P routes to destinations via eth0 are now
missing.

3.4. Activating a device with ip link set

Before an interface can be bound to a device, the kernel needs to support the physical networking device
(beyond the scope of this document) either as a module or as part of the monolithic kernel. If ip link
show lists the device, then this condition has been satisfied, and ip link set dev <interface> can be used
to activate the interface.

Example B.9. Activating a link layer device with ip link set

[root@ristan]# ip |link show dev ethO

2: ethO: <BROADCAST, MULTI CAST> ntu 1500 qgdi sc pfifo_fast glen 100
link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root@ristan]# arping -D -1 ethO 192. 168. 99. 35

Interface "eth0" is down

[root@ristan]# ip link set dev ethO up

[root@ristan]# ip address show dev et hO

2: ethO: <BROADCAST, MIULTI CAST, UP> mtu 1500 qdi sc pfifo_fast glen 100
link/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal ethO

[root @ristan]# ip route show

192.168.99. 0/ 24 dev ethO proto kernel scope link src 192.168.99.35

127.0.0.0/8 dev o scope link

Once the device itself has been activated, operations which require the ability to read data from the de-
vice or write data to the device will succeed. Refer to Example B.5, “ Duplicate Address Detection with
arping” for aclear example of anetwork operation which does not require afunctional IP layer but need
access to afunctioning link layer.

I'll suggest that the reader consider what other common networking device might not want to have a
functional 1P layer, but would need a functioning link layer. FIXME -- Why in the world does tcpdump
work even though the link layer isdown? -- FIXME

In Example B.9, “Activating alink layer device with ip link set”, we are bringing up a device which al-
ready has IP address information bound to the device. Notice that as soon as the link layer is brought
up, the network route to the local network is entered into the main routing table. By comparing Exam-
ple B.9, “Activating alink layer device withip link set” and Example B.8, “Deactivating alink lay-

er devicewithip link set”, we notice that when the link layer is brought up the default routeis not re-
turned! Thisisthe most significant side effect of bringing down an interface through which other net-
works are reachable. There are several ways to repair the frightful missing default route condition: you
can useip route add, route add, or you can run the networking startup scripts again.

101

Ethernet Layer Tools

3.5. Using ip link set to change the MTU

Changing the MTU on an interface is a classical example of an operation which, prior to the arrival of
iproute? one could only accomplish with the ifconfig command. Since iproute2 has separate utilities
for managing the link layer, addressing, routing, and other 1P-related objects, it becomes clear even with
the command-line utilities that the MTU isreally afunction of the link layer protocol.

Example B.10. Using ip link set to change device flags

[root@ristan]# ip |link show dev ethO

2: ethO: <BROADCAST, UP> ntu 1500 qdisc pfifo_fast qglen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

[root @ristan]# # ip link set dev ethO ntu 1412

[root@ristan]# ip |link show dev ethO

2: ethO: <BROADCAST, UP> ntu 1412 qdisc pfifo_fast qglen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

This simple example demonstrates exactly how to change the MTU. For abroader discussion of MTU,
please consult Section 10.1, “MTU, MSS, and ICMP". The remaining options to the ip link command
cannot be used while theinterfaceisin an UP state.

3.6. Changing the device name with ip link set

For the occasional need to rename an interface from one name to another, the command ip link set pro-
vides the desired functionality. Though this command must be used when the deviceis not in an UP
state, the command itself is quite simple. Let's name the interface insideO.

Example B.11. Changing the device name with ip link set

[root@ristan]# ip link set dev ethO ntu 1500

[root@ristan]# ip link set dev ethO nane inside

[root@ristan]# ip |link show dev inside

2: inside: <BROADCAST, UP> ntu 1500 qdisc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

The convenience of being able to rename devices can be substantial when you are managing many ma-
chines and want to use the same name on many different machines, which may have different hardware.
Of course, by changing the name of the device, you may foil any scripts which assume conventional de-
vice names (ethO, ethl, ppp0).

3.7. Changing hardware or Ethernet broadcast address
with ip link set

This command changes the hardware or broadcast address of a device as used on the mediato whichitis
connected. Supposedly there can be name clashes between two different Ethernet cards sharing the same
hardware address. | have yet to see this problem, so | suspect that changing the hardware address is more
commonly used in vulnerabliity testing or even more nefarious purposes.

102

Ethernet Layer Tools

Alternatively, one can set the broadcast address to a different value, which as Alexey remarks as an
asideintheiproute2 manual will "break networking." Changing the Ethernet broadcast address implies
that no conventionally configured host will answer broadcast ARP frames transmitted onto the Ethernet.
Since conventional ARP requests are sent to the Ethernet broadcast of ff: ff: ff:ff:ff:ff, broad-
cast frames sent after changing the link layer broadcast address will not be received by other hosts on the
segment. To echo Alexey's sentiments: if you are not sure what you are doing, don't change this. You'll
break networking terribly.

Example B.12. Changing broadcast and hardwar e addresseswith ip link set

[root@ristan]# ip link set dev inside nane ethO
[root@ristan]# ip |link set dev ethO address 00: 80: c8: f 8: be: ef
[root@ristan]# ip |link show dev et hO
2: ethO: <BROADCAST, UP> mtu 1500 qdi sc pfifo _fast glen 100
i nk/ether 00:80:c8:f8:be:ef brd ff:ff:ff:ff:.ff:ff
[root@ristan]# ip |link set dev ethO broadcast ff:ff:88:ff:ff:88
[root@ristan]# ip |link show dev et hO
2: ethO: <BROADCAST, UP> mtu 1500 qdi sc pfifo _fast glen 100
I i nk/ether 00:80:c8:f8:be:ef brd ff:ff:88:ff:ff:88
[root@ristan]# ping -¢c 1 -n 192.168.99. 254 >/dev/null 2>&1 &
[root @ristan]# tcpdunp -nngtei ethO
tcpdunp: |istening on ethO
0:80:c8:f8:be:ef ff:ff:88:ff:ff:88 42: arp who-has 192.168. 99. 254 tell 192.168. 99.
0:80:c8:f8:be:ef ff:ff:88:ff:ff:88 42: arp who-has 192.168. 99. 254 tell 192.168. 99.

This practical example demonstrates setting the hardware address and the broadcast address. Changing
the hardware address, also known as the media access control (MAC) address, is not usually necessary.
It is asimple operation without detrimental side effects, provided there is no address clash with an exist-
ing device.

Note, however, in the tcpdump output, the effect of changing the Ethernet broadcast address. As dis-
cussed in the paragraph above, changing the broadcast is probably not a good idea 2,

Asyou can see, theip link utility is atreasure trove of information and allows a great deal of control
over the devices on alinux system.

4. 1p neighbor

Part of the iproute2 command suite, ip neighbor provides acommand line interface to display the
neighbor table (ARP cache), insert permanent entries, remove specific entries and remove alarge num-
ber of entries. For peculiarities and commonalities of the iproute2 tools, refer to Section 2, “ Some gen-
eral remarks about iproute? tools”.

The more commonly used analog to ip neighbor show, arp -n displays the ARP cache in a possibly
more recognizable format.

Example B.13. Displaying the ARP cache with ip neighbor show

[root@ristan]# ip neighbor show
192. 168. 99. 254 dev ethO || addr 00: 80: c8:f8:5c: 73 nud reachabl e

2| refer the reader to an adage: Just because it can be done doesn't mean it should be done.

103

Ethernet Layer Tools

On routers and other machines with large ARP caches, you may find you wish to look at the ARP cache
only on a particular interface. By specifying the interface on which you wish to see the neighbor table,
you can limit the output.

Example B.14. Displaying the ARP cache on an interface with ip neighbor show

[root @wan-gw] # i p nei ghbor show dev ethO
205.254.211. 39 |l addr 00: 02: b3: al: b8: df nud del ay
205.254.211.54 |1l addr 00: dO: b7: 80: ce: ce nud del ay
205.254.211. 179 |l addr 00:80:c8:f8:5c: 72 nud reachabl e

Another way to limit the output is to specify the subnet in which you are interested. Simply append the
subnet specification to the command.

Example B.15. Displaying the ARP cachefor a particular network with ip
neighbor show

[root @masqg-gw] # i p nei ghbor show 192. 168. 100. 0/ 24
192.168. 100. 1 dev eth3 |l addr 00: cO: 7b: 7d: 00: ¢c8 nud stal e
192. 168. 100. 17 dev et hO || addr 00: 80: c8: e8: 4b: 8e nud reachabl e

Note that in the case of masq- gw, there are neighbor table entries for I|Ps on more than one interface,
because mas q- gw breaks the 192.168.100.0/24 network into two parts. Thisis an advanced technique
described in fuller detail in Section 3, “Breaking a network in two with proxy ARP”.

In addition to displaying the neighbor table, it is possible to make static mappings. For paranoid systems
administrators, who do not want to enable ARP on their networks or on particular links, theip neigh-
bor add command may prove useful. Refer to Section 3, “ARP filtering” for a discussion of the ramifi-
cations of disabling ARP.

In Example B.16, “Entering a permanent entry into the ARP cache with ip neighbor add”, let's assume
that the service router is incapable of correctly answering ARP requests. The administrator of nasq-
gw could make a permanent entry in the ARP cache mapping 192.168.100.1 to the link layer address of
service-router.

Example B.16. Entering a permanent entry into the ARP cache with ip neighbor
add

[root @masqg-gw # i p nei ghbor add 192. 168.100. 1 || addr 00: cO: 7b: 7d: 00: c8 dev et h3 nu

This creates an entry in the neighbor table which maps 192.168.100.1 to link layer address
00:¢0:7b:7d:00:c8. Subsequent | P packets bound for 192.168.100.1 will be encapsulated in Ethernet
frames with 00:¢0:7b:7d:00:c8 in the destination bytes. This permanent mapping cannot be overridden
by ARP. It would need to be removed with ip neighbor delete.

For those who insist on such athing, there is support for creating and deleting proxy ARP entries with ip
neighbor, although this has been deprecated. For along discussion of thistopic, see this discussion on

104

http://www.uwsg.iu.edu/hypermail/linux/kernel/0110.2/index.html#523

Ethernet Layer Tools

the kernel mailing list [http://www.uwsg.iu.edu/hypermail/linux/kernel/0110.2/index.html#523]. Other
tools should be used to create proxy ARP entries. Refer to Section 1, “arp”, Section 3, “Breaking a net-
work in two with proxy ARP” and Section 2, “Proxy ARP".

Example B.17. Entering a proxy ARP entry with ip neighbor add proxy

-- this is deprecated; use arp or kernel proxy_ arp instead --#
[root @masqg-gw] # i p nei ghbor add proxy 192.168.100.1 dev et hO
-- this is deprecated; use arp or kernel proxy_ arp instead --#

Strangely, the ip neighbor show command does not display any entries added and deleted with ip
neighbor add proxy, so arp isrequired to view these entries. In short, don't useip neighbor add

proxy.

Entries can also be modified at any time. This allows learned entries to be replaced with static entries if
there's aready an entry in the ARP cache for a specified IP.

Example B.18. Altering an entry in the ARP cache with ip neighbor change

[root@ristan]# ip nei ghbor add 192.168.99. 254 || addr 00:80: c8: 27: 69: 2d dev eth3
RTNETLI NK answers: File exists

[root@ristan]# ip nei ghbor show 192. 168. 99. 254

192. 168. 99. 254 dev ethO || addr 00:80:c8:f8:5c: 73 nud reachabl e

[root@ristan]# ip nei ghbor change 192.168.99. 254 || addr 00: 80: c8: 27: 69: 2d dev eth
[root@ristan]# ip nei ghbor show 192. 168. 99. 254

192. 168. 99. 254 dev ethO |l addr 00: 80: c8: 27: 69: 2d nud per manent

To remove the entry we added above in Example B.16, “Entering a permanent entry into the ARP cache
with ip neighbor add”, we could run the following command. This invalidates the entry forcing the
NUD of the entry into failed state.

Example B.19. Removing an entry from the ARP cache with ip neighbor del

[root @mesqg-gw] # i p nei ghbor del 192.168.100.1 dev eth3
[root @masg-gw] # i p nei ghbor show dev et h3
192.168.100.1 nud failed

Subsequent attempts to reach the IP address 192.168.100.1 will require the generation of anew ARP re-
quest, which (you hope!) returns the new or currently available link layer address.

While | have never found a good use for the ip neighbor flush command, it is provided, and accepts a
destination network address as an argument. Without a destination network address, an interface specifi-
cation is required.

Example B.20. Removing lear ned entries from the ARP cache with ip neighbor
flush

105

http://www.uwsg.iu.edu/hypermail/linux/kernel/0110.2/index.html#523
http://www.uwsg.iu.edu/hypermail/linux/kernel/0110.2/index.html#523

Ethernet Layer Tools

[root@ristan]# ip neighbor flush dev eth3

Although it is not commonly required, theip neighbor tool isaconvenient tool for displaying and alter-
ing the ARP cache (neighbor table).

5. mii-tool

A key tool for determining if you are connected to the Ethernet, and if so, at what speed. The mii-tool
program does not support all Ethernet devices, as some Ethernet devices have their own vendor-supplied
tools to report the same information. The mii-tool source code is based on atool called mii-diag which
provides slightly more information but isless user friendly.

The information reported by mii-tool is quite terse. The following table should clarify the meaning of
the speeds you'll encounter in output from mii-tool 3,

Table B.2. Ethernet Port Speed Abbreviations

Port Speed Description

10baseT-HD 10 megabit half duplex

10baseT-FD 10 megabit full duplex
100baseTx-HD 100 megabit half duplex
100baseTx-FD 100 megabit full duplex

The raw number indicates the number of bits which can be exchanged between two Ethernet devices
over thewire. So 10 megabit Ethernet can support the transmission of ten million bits per second. The
suffix to each identifier indicates whether both hosts can send and receive simultaneously or not. Half
duplex means that each device can either send or receive in the same instant. Full duplex means that
both devices can send and receive simultaneously.

The simplest use of mii-tool reportsthe link status of al Ethernet devices on a system. Any argument to
mii-tool isinterpreted as an interface name to query for link status.

Example B.21. Detecting link layer statuswith mii-tool

[root@ristan]# mi-tool
et hO: negotiated 100baseTx-FD, |ink ok
[root@ristan]# mi-tool -v
et hO: negotiated 100baseTx-FD, |ink ok
product info: vendor 08:00:17, nodel 1 rev O
basi ¢ node: aut onegoti ati on enabl ed
basi c status: autonegotiation conplete, |ink ok
capabilities: 100baseTx-FD 100baseTx- HD 10baseT- FD 10baseT- HD
advertising: 100baseTx-FD 100baseTx-HD 10baseT- FD 10baseT- HD
link partner: 100baseTx-FD 100baseTx- HD 10baseT- FD 10baseT- HD fl ow contr ol

3 Thereis a standard speed/Ethernet transmission style supported by mii-tool to which | have not referred. That is 100BaseT4. 100BaseT4 pro-
vides support for 100 megabit Ethernet networking over Category 3 rated cable. Thisis probably not a concern for most recently upgraded net-
work infrastructure. The standard networking cable pulled in new construction and renovation is now Category 5 cable which supports 100Base-
Tx-FD and possibly gigabit Ethernet. So, let's relegate 100BaseT4 to this footnote, and resume.

106

Ethernet Layer Tools

In the above example, we caninfer that t r i st an has only one Ethernet device (or no Ethernet drivers
loaded for any other present Ethernet devices). The first Ethernet device has successfully negotiated a
100 megabit full duplex connection with the device to which it is connected.

Although a great rarity, you may have occasion to dictate to the Ethernet interface the speed at which it
should talk to the switch or hub. mii-tool supports a mode of operation under which you indicate sup-
ported modes for autonegotiation. Normally, two connected devices will negotiate the fastest possible
commonly shared speed. Y ou can select what speeds you want to support on an Ethernet interface by us-
ing mii-tool.

Example B.22. Specifying Ethernet port speedswith mii-tool --advertise

[root@ristan]# mi-tool mi-tool --advertise 10baseT-HD, 10baseT- FD
restarti ng aut onegotiation...

[root @ristan]# mii-tool

et hO: negotiated 10baseT-FD, |ink ok

After we specified that we wished only to support 10baseT-HD and 10baseT-FD as acceptable speeds,
mii-tool caused the Ethernet driver to renegotiate port speed with the attached device. Here we selected
10baseT-FD.

Example B.23. Forcing Ethernet port speed with mii-tool --force

[root @ristan]# mii-tool --force 10baseT-FD
[root@ristan]# mii-tool

ethO: 10 Miit, full duplex, link ok
[root@ristan]# mi-tool --restart

restarti ng autonegotiation...
[root@ristan]# mii-tool

et hO: negotiated 100baseTx-FD, |ink ok

After manipulating the speed at which the Ethernet driver would communicate with the connected de-
viceont ri st an, we chose to restart the autonegotiation process without forcing a particular speed or
advertising a particular speed.

So, if you must know at what speed your linux machine is connected to another device, mii-tool comes
to your rescue.

107

Appendix C. IP Address Management

A machine which can access Internet resources has an | P address, whether that |P address is a public ad-
dress or a private address hidden behind an SNAT router ! with the increasi ngly common use of linux
machines as servers, desktops, and embedded devices and with changing network topologies and re-ad-
dressing, the need to be able to determine the current 1P address of a machine and modify that address
has consequently become a common need.

| assume in this chapter that the reader has some familiarity with CIDR addressing and netmasks. If any
of these concepts are unfamiliar, or the reader would like to brush up, | suggest avisit to some of the
links which can be found in Section 1.3, “ General 1P Networking Resources”’.

WEe'll begin our tour of the utilities for observing, changing, removing, and adding | P addresses to net-
work devices with ifconfig, the traditional utility for 1P management. We will also examine the newer
and more flexible ip address, akey part of the iproute2 package.

1. ifconfig

The venerableifconfigis available on amost every unix | have encountered. In addition to reporting the
IP addressing and usage statistics of an optionally specified interface, ifconfig can modify an interface's
MTU and other flags and interface characteristics, bring up an interface and bring down an interface.
Thistool isthe primary tool for manipulation of IP addressing on many linux distributions.

1.1. Displaying interface information with ifconfig

Inits simplest use, ifconfig merely reports the | P interface and relevant statistics. For Ethernet devices,
the hardware address, | P address, broadcast, netmask, | P interface states, and some other additional
information is presented. For other interfaces, different information may be presented to the user, but
the basic summary of |P addressing information will aways be available. Be sure to read Section 1.4,
“Reading ifconfig output” also.

Example C.1. Viewing interface information with ifconfig

[root@ristan]# ifconfig
et hO Li nk encap: Et hernet HwWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99.255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packet s: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

l o Li nk encap: Local Loopback
i net addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNI NG MruU: 16436 Metric:1
RX packets: 306 errors: 0 dropped: 0 overruns: 0 frame: 0

LI'm sure somebody will be glad to nitpick here and tell me that s/he has a machine connected to the Internet which uses SNA, DecNET, IPX, or
NetBEUI to connect to another host which actually does speak | P, thus proving that not every host which has access to the Internet is actually di-
rectly speaking |P. Another example is doubtless, wireless devices, such as telephones. Here, I'll concern myself with the mgjority case.

108

IP Address Management

TX packets: 306 errors: 0 dropped: O overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 0
RX byt es: 29504 (28.8 Kb) TX bytes: 29504 (28.8 Kb)

It isfairly common to specify the name of an interface as an argument to ifconfig, which will restrict the
output to the named interface. Thisisthe only way to retrieve information from ifconfig about link layer
devices which are available, but not in an UP state. See also Section 3, “ip link” and Section 2, “ip ad-
dress’.

There are many other options available to the ifconfig command to control addressing and interface
state. Contrary to the behaviour of most other standard unix command line utilities which operate on ar-
guments and options, ifconfig operates on a grammar after the specified interface. Subsequent examples
will demonstrate how this differs from conventional modern unix tools.

1.2. Bringing down an interface with ifconfig

Let'slook at some simple operations you can perform with ifconfig. Occasionally, you will need to
bring down a network interface. For an introduction to this and its side effects, see Example 1.6, “Bring-
ing down a network interface with ifconfig” and the list of side effects.

Example C.2. Bringing down an inter face with ifconfig

[root@ristan]# ifconfig ethO down

[root@ristan]# ifconfig

l o Li nk encap: Local Loopback
i net addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNI NG MruU: 16436 Metric:1
RX packets: 306 errors: 0 dropped: 0 overruns: 0 frame: 0
TX packets: 306 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 0
RX byt es: 29504 (28.8 Kb) TX bytes: 29504 (28.8 Kb)

Naturally, when we view the active interfaces after downing the first Ethernet interface, we see that ethO
isno longer present. Thisis exactly what we had intended. Now to bring up the interface, we'll need the
I P address and netmask information.

1.3. Bringing up an interface with ifconfig

Bringing up an interface is slightly more complex than bringing an interface down because you need to
have the | P addressing information handy in order to bring the interface back. For an introduction to the
side effects of bringing up an | P address on an interface, see Example 1.7, “Bringing up an Ethernet in-
terface with ifconfig” and thelist of side effects.

Example C.3. Bringing up an interface with ifconfig

[root@ristan]# ifconfig ethO 192. 168. 99. 35 net mask 255. 255. 255. 0 up
[root@ristan]# ifconfig
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1

109

IP Address Management

RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packet s: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100

RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

l o Li nk encap: Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNI NG MrU: 16436 Metric:1
RX packets: 306 errors: 0 dropped: 0 overruns: 0 frame: 0
TX packets: 306 errors: 0 dropped: O overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 0
RX byt es: 29504 (28.8 Kb) TX bytes: 29504 (28.8 Kb)

1.4. Reading ifconfig output

The above operations are the simple operations one can perform with ifconfig. Let's examine the output
abit more closely now, with an eye toward the other flags and settings we can manually twiddle.

Thefirst line of each interface definition represents data which cannot be altered with ifconfig. If we
consider only Ethernet interfaces, the link encapsulation will always say "Ethernet”, and the hardware
address cannot be altered with ifconfig 2. Below this, one line summarizes the | P information associated
with thislogical interface.

The third line indicates the current states of the interface, maximum transmission unit, and the metric for
thisinterface. Possible state options are itemized in the table below. The maximimum transmission unit
isroutinely set to 1500 bytes for Ethernet and promptly forgotten. MTU suddenly becomes important
when | P packets are forwarded across a link layer which requires asmaller MTU. Thusifconfig pro-
vides a method to set the MTU on an interface. For more on MTU, see Section 10.1, “MTU, MSS, and
ICMP". The remaining lines of output are taken from the Ethernet driver. See further discussion of these
statistics below.

1.5. Changing MTU with ifconfig

Itisarare occasion on which the MTU needs to be changed, but when it needs to be changed, nothing
else will suffice. Here's an example of setting the MTU on an interface to 1412 bytes.

Example C.4. Changing M TU with ifconfig

[root@ristan]# ifconfig ethO mu 1412
[root @ristan]# ifconfig ethO
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99.255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1412 Metric: 1
RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packet s: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

2\t you need to change the hardware address of an Ethernet interface, you have a strange need, but you can accomplish this using the ip link set
addr ess command.

110

IP Address Management

1.6. Changing device flags with ifconfig

Every device on a system has flags which indicate the state the device may be in. These flags can be al-
tered by the ifconfig utility.

Table C.1. Interface Flags

Flag Description
upP deviceisfunctioning
BROADCAST device can send traffic to all hosts on the link
RUNNING ??
MULTICAST device can perform and receive multicast packets
ALLMULTI device receives all multicast packets on the link
PROMISC devicereceives all traffic on the link

I cannot confidently recommend believing the flags as reported by ifconfig output. Attestations from
others and experimentation has proven to me that these flags (particularly the PROMISC flag) do not ac-
curately represent the state of the device as reported in log files (by the kernel) and by theip link show
utility.

This does not mean, however, that the flags cannot be set with the ifconfig utility. Manipulation of the
flags on an interface operates according to a peculiar grammar. To set the PROMISC flag, one issues a
command with the promisc option from the grammar. If one wishes to remove the PROMISC flag from
an interface, the -promisc option is required.

Example C.5. Setting interface flags with ifconfig

[root@ristan]# ifconfig ethO prom sc

[root@ristan]# ifconfig ethO

et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG PROM SC MULTI CAST MTU: 1412 Metric: 1
RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packets: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

[root@ristan]# ifconfig ethO -prom sc

[root @ristan]# ifconfig ethO -arp

[root @ristan]# ifconfig ethO

et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99. 255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG NOARP MULTI CAST MrU: 1412 Metric:1
RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packet s: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

[root@ristan]# ifconfig ethO arp

111

IP Address Management

1.7. General remarks about ifconfig

Since linux 2.0 the kernel has supported multiple | P addresses hosted on the same device. By suffixing
the real interface name with a colon and a non-negative integer, you can bring up additional IP adress-
es on the same device. Example alias names are eth0:0 eth0:7. See Section 4, “Multiple IPs on an Inter-
face” for further details.

Asyou can see, ifconfig is both a powerful and idiosyncratic tool for controlling network interfaces and
devices.

2. 1p address

Part of the iproute2 suite, ip address can list the | P addresses affiliated with interfaces, add 1Ps, delete
IPs, and remove all IPs on agiven device.

2.1. Displaying interface information with ip address
show

Thefirst thing you'll want to do islist the IPs on your machine. The ip address tool will display IP (and
terse encapsulation information) when invoked with the show verb. To specify that you wish to see the
IP information for only one interface, you can add dev <device-name>

Example C.6. Displaying I P infor mation with ip address

[root @ristan]# ip address show
1: lo: <LOOPBACK, UP> ntu 16436 qdi sc noqueue
I i nk/ | oopback 00: 00: 00: 00: 00: 00 brd 00: 00: 00: 00: 00: 00
inet 127.0.0.1/8 brd 127. 255. 255. 255 scope host |o
2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal et hO
[root@ristan]# ip address show dev et hO
2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal ethO
[root @vwan-gw] # i p address show wanO
8: wan0: <PO NTOPO NT, NOARP, UP> mtu 1500 qdi sc pfifo_fast glen 100
i nk/ ppp 01:f4 peer 00: 00
i net 205. 254. 209. 73 peer 205.254.209. 74/ 32 scope gl obal wan0
[root @eal -exanpl e]l# i p address show pppO
5: ppp0: <PA NTOPO NT, MJLTI CAST, NOARP, UP> ntu 1492 qdisc htb glen 3

I'i nk/ ppp
i net 67.38.163.197 peer 67.38.163. 254/ 32 scope gl obal pppO

Y ou should notice some similarity between the output of ip address and ifconfig. Each deviceis given
an sequential number as an identifying number. Thisis merely a convenience, and should not be used to
refer to devices. The second field in an entry is the interface name (which usually corresponds to the de-
vice name). Next, we see the familiar device flags and maximum transmission unit size.

112

IP Address Management

Thefinal fieldsin the first line of output for each device entry refer to the traffic control queueing disci-
pline (qdisc) and the Ethernet buffer transmit queue length (glen). For more on understanding and using
traffic control under linux, see the LARTC documentation [http://lartc.org/howto/].

The second line of output describes the link layer characteristics of the device. For Ethernet devices, this
will always say "link/ether" followed by the hardware address of the device and the media broadcast ad-
dress. For more detail on the link layer characteristics of a device see Section 3, “ip link”.

Subsequent lines of output describe the | P addresses available on each interface. In atypical installation
only one address is used on each interface, although an arbitrary number of addresses can aso be used
on each interface.

Each line contains the | P address and netmask in CIDR notation, an optional broadcast address, scope
information and alabel. Let's examine the scope and labdl first and then discuss IP addressing and
broadcast calculation. The possible values for scope are outlined in the following table.

Table C.2. IP Scope under ip address

Scope Description

global valid everywhere
site valid only within this site (IPv6)
link valid only on this device
host valid only inside this host (machine)

Scope is hormally determined by the ip utility without explicit use on the command line. For example,
an IP addressin the 127.0.0.0/8 range falls in the range of localhost | Ps, so should not be routed out any
device. This explains the presence of the host scope for addresses bound to interface lo. Usually, ad-
dresses on other interfaces are public interfaces, which means that their scope will be global. We will re-
visit scope again when we discuss routing with ip route, and there we will aso encounter the link scope.

Now, let's examine IP addressing with the ip address utility by adding and removing IP addresses from
active interfaces.

2.2. Using ip address add to configure IP address infor-
mation

If you need to host an additional 1P addressont ri st an, here's how you would accomplish this task.

Example C.7. Adding | P addressesto an interface with ip address

[root @ristan]# ip address add 192.168.99.37/24 brd + dev ethO
[root@ristan]# ip address show dev et hQ
2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdisc pfifo _fast glen 100

i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff.ff:ff

i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal et h0

i net 192.168.99.37/24 brd 192. 168. 99. 255 scope gl obal secondary et hO

There are afew items of note. You can useip address add even if thelink layer on the deviceis down.
This means that you can readdress an interface without bringing it up. When you add an address with-
in the same CIDR network as another address on the same interface, the second address becomes a sec-

113

http://lartc.org/howto/
http://lartc.org/howto/

IP Address Management

ondary address, meaning that if the first address is removed, the second address will also be purged from
the interface.

In order to support compatibility with ifconfig the ip address command allows the user to specify ala-
bel on every hosted address on a given device. After adding an address to an interface aswe did in Ex-
ample C.7, “Adding I P addresses to an interface with ip address’, ifconfig will not report that the new
IP 192.168.99.37 is hosted on the same device as the primary 1P 192.168.99.35. In order to prevent this
sort of confusion or apparently contradictory output, you should get in the habit of using the label op-
tion to identify each IP hosted on adevice. Let'stake alook at how to remove the 192.168.99.37 IP from
ethO and add it back so that ifconfig will report the presence of another 1P on the ethO device.

2.3. Using ip address del to remove IP addresses from
an interface

There is adifference between IPs considered as primary addresses on an interface and secondary ad-
dresses. If in the output, an address is listed as a secondary address, removing the primary address will
a so remove the secondary address.

A workaround isto set the netmask on the second address added to the interface to /32. Unfortunately,
this subterfuge will prevent the kernel from entering the correct corresponding network and broadcast
routes.

Example C.8. Removing | P addresses from interfaces with ip address

[root @ristan]# ip address del 192.168.99.37/24 brd + dev ethO
[root@ristan]# ip address add 192.168.99.37/24 brd + dev ethO | abel ethO:0
[root@ristan]# ip address show dev et hO
2: ethO: <BROADCAST, MULTI CAST, UP> ntu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal ethO
i net 192.168.99.37/24 brd 192.168. 99. 255 scope gl obal secondary et hO:0
[root@ristan]# ifconfig
et hO Li nk encap: Et hernet HWaddr 00: 80: C8: F8: 4A: 51
i net addr:192.168.99.35 Bcast:192.168.99. 255 Mask: 255. 255. 255. 0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
RX packet s: 190312 errors: 0 dropped: 0 overruns: 0 frane: 0
TX packet s: 86955 errors: 0 dropped: 0 overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 100
RX byt es: 30701229 (29.2 M) TX bytes: 7878951 (7.5 M)
Interrupt:9 Base address: 0x5000

et hO: O Li nk encap: Et hernet HwWaddr 00: 80: C8: F8: 4A: 51
i net addr:10.10.20.10 Bcast: 10.10.20.255 Mask: 255. 255. 255.0
UP BROADCAST RUNNI NG MULTI CAST MTU: 1500 Metric:1
Interrupt:9 Base address: 0x1000

l o Li nk encap: Local Loopback
i net addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNI NG MrU: 16436 Metric:1
RX packets: 306 errors: 0 dropped: 0 overruns: 0 frame: 0
TX packets: 306 errors: 0 dropped: O overruns: 0 carrier:0
col l'i sions: 0 txqueuel en: 0

114

IP Address Management

RX bytes: 29504 (28.8 Kb) TX bytes: 29504 (28.8 Kb)

Taking the minor precaution of using labels on |P addresses added to an interface will prevent confusion
if there are multiple administrators of a machine, some of whom use ifconfig.

2.4. Removing all IP address information from an inter-
face with ip address flush

Finally, let'slook at the use of ip address flush. If an interface has aready had | P addresses assigned to
it, and all of the addresses need to be removed (along with their routes), there is one handy command to
accomplish all of these tasks. ip address flush takes an interface name as an argument. Let's look at the
output of ip address show just before and just after removing al 1Ps.

Example C.9. Removing all IPson an interface with ip addressflush

[root@ristan]# ip address show dev et hO

2: ethO: <BROADCAST, MIULTI CAST, UP> mtu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff
i net 192.168.99.35/24 brd 192. 168. 99. 255 scope gl obal et hO
i net 192.168.99.37/24 brd 192.168. 99. 255 scope gl obal secondary et hO:0

[root @ristan]# ip address flush

Fl ush requires argunents.

[root@ristan]# ip address flush dev ethO

[root@ristan]# ip address show dev et hQ

2: ethO: <BROADCAST, MULTI CAST, UP> mtu 1500 qdi sc pfifo_fast glen 100
i nk/ether 00:80:c8:f8:4a:51 brd ff:ff:ff:ff:ff:ff

2.5. Conclusion

Asyou can see, the ip address utility provides awealth of information and a great deal of control over
the 1Ps associated with each device. For more detailed information about the iproute2 package and in-
cluded tools, see Section 1.6, “iproute2 documentation”.

115

Appendix D. IP Route Management

Routing and understanding routing in an |P network is one of the fundamentals you will need to grasp
the flexibility of IP networking, and services which run on IP networks. It is not enough to address the
machines and mix yourself adirty martini. You'll need to verify that the machine has aroute to any net-
work with which it needs to exchange I P packets.

One key element to remember when designing networks, viewing routing tables, debugging networking
problems, and viewing network traffic on the wire isthat IP routing is statel ess !, This means that every
time a new packet hits the routing stage, the router makes an independent decision about where to send
this packet.

In this section, we'll look at the tools available to manipulate and view the routing table(s). We'll start
with the well known route command, and move on to the increasingly used ip route and ip ruletools
which are part of the iproute2 package.

1. route

In the same way that ifconfig is the venerable utility for IP address management, r oute is atremendous-
ly useful command for manipulating and displaying | P routing tables.

Here we'll look at several tasks you can perform with route. Y ou can display routes, add routes (most
importantly, the default route), remove routes, and examine the routing cache. | will switch between tra-
ditional and CIDR notation for network addressing in this (and subsequent) sections, so the reader un-
aware of these notations is encouraged to refer liberally to the links provided in Section 1.3, “ General IP
Networking Resources”.

When using route and ip route on the same machine, it isimportant to understand that not all routing
table entries can be shown with route. The key distinction is that r oute only displaysinformation in the
main routing table. NAT routes, and routes in tables other than the main routing table must be managed
and viewed separately with theip routetool.

1.1. Displaying the routing table with route

By far the simplest and most common task one performs with route is viewing the routing table. On a
single-homed desktop liket r i st an, the routing table will be very simple, probably comprised of only
afew routes. Compare this to a complex routing table on a host with multiple interfaces and static routes
to internal networks, such asmasq- gw. It is by using the route command that you can determine where
a packet goes when it leaves your machine.

Example D.1. Viewing a simple routing table with route

[root@ristan]# route -n
Kernel IP routing table

Desti nati on Gat eway Genmask Fl ags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

1 For those who have some doulbt, netfilter provides a connection tracking mechanism for packets passing through alinux router. This connection
tracking, however, isindependent of routing. It isimportant to not conflate the packet filtering connection tracking statefulness with the state-
lessness of IP routing. For an example of acomplex networking setup where netfilter's stateful ness and the statel essness of |P routing collide, see
Section 4, “Multiple Connections to the Internet”.

116

IP Route Management

In the smplest routing tables, asint ri st an's case, you'll see three separate routes. The route which is
customarily present on al machines (and which I'll not remark on after this) is the route to the loopback
interface. The loopback interface is an | P interface completely local to the host itself. Most commonly,
loopback is configured as asingle IP address in a class A-sized network. This entire network has been
set aside for use on loopback devices. The address used is usually 127.0.0.1/8, and the device name un-
der al default installations of linux | have seenislo. It isnot at all unheard of for people to host services
on loopback which are intended only for consumption on that machine, e.g., SMTP on tcp/25.

The remaining two linesdefinehow t r i st an should reach any other |P address anywhere on the In-
ternet. These two routing table entries divide the world into two different categories. alocally reachable
network (192.168.99.0/24) and everything else. If an address falls within the 192.168.99.0/24 range,
tri st an knowsit can reach the IP range directly on the wire, so any packets bound for this range will
be pushed out onto the local media.

If the packet fallsin any other ranget ri st an will consult its routing table and find no single route
that matches. In this case, the default route functions as aterminal choice. If no other route matches, the
packet will be forwarded to this destination address, which is usually arouter to another set of networks
and routers (which eventually lead to the Internet).

Viewing a complex routing table is no more difficult than viewing a simple routing table, although it can
be a bit more diffiult to read, interpret, and sometimes even find the route you wish to examine.

Example D.2. Viewing a complex routing table with route

[root @asqg-gw # route -n
Kernel IP routing table

Desti nati on Gat eway Gennmask Fl ags Metric Ref Use Iface
192.168.100.0 0.0.0.0 255. 255. 255. 252 U 0 0 0 eth3
205.254.211.0 0.0.0.0 255.255.255.0 U 0 0 0 ethl
192.168.100.0 0.0.0.0 255.255.255.0 U 0 0 0 ethoO
192.168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
192. 168. 98. 0 192. 168.99. 1 255.255.255.0 UG 0 0 0 eth2
10.38.0.0 192. 168. 100.1 255.255.0.0 uG 0 0 0 eth3
127.0.0.0 0.0.0.0 255.0.0.0 u 0 0 0lo

0.0.0.0 205.254.211.254 0.0.0.0 uG 0 0 0 ethl

The above routing table shows a more complex set of static routes than one finds on a single-homed
host. By comparing the network mask of the routes above, we can see that the network mask islisted
from the most specific to the least specific. Refer to Section 5, “ Route Selection” for more discussion.

A quick glance down this routing table also provides us with agood deal of knowledge about the topol-
ogy of the network. Immediately we can identify four separate Ethernet interfaces, 3 locally connected
class C sized networks, and one tiny subnet (192.168.100.0/30). We can a so determine that there are
two networks reachable via static routes behind internal routers.

Now that we have taken a quick glance at the output from the route command, let's examine a bit more
systematically what it's reporting to us.

1.2. Reading route's output

For this discussion refer to the network map in the appendix, and also to Example D.2, “Viewing a com-
plex routing table with route’. route is a venerable command, one which can manipulate routing ta-

117

IP Route Management

bles for protocols other than IP. If you wish to know what other protocols are supported, try r out e - -
hel p at your leisure. Fortunately, r oute defaults to inet (IPv4) routesif no other address family is spec-
ified.

By combining the values in columns one and three you can determine the destination network or host
address. Thefirst linein masqg- gws routing table shows 192.168.100.0/255.255.255.252, which is
more conveniently written in CIDR notation as 192.168.100.0/30. This is the smallest possible network
according to RFC 1878 [http://www.isi.edu/in-notes/rfc1878.txt]. The only two useable addresses are
192.168.100.1 (ser vi ce- r out er) and 192.168.100.2 (masg- gw).

The second column holds the I P address of the gateway to the destination if the destination is not alo-
cally connected network. If there is avalue other than 0.0.0.0 in thisfield, the kernel will address the
outbound packet for this device (arouter of some kind) rather than directly for the destination. The col-
umn after the netmask column (Flags) should always contain a G for destination not locally connected to
the linux machine.

Thefields Metric, Ref and Use are not generally used in simple or even moderately complex routing ta-
bles, however, we will discuss the Use column further in Section 1.3, “Using route to display the rout-
ing cache”.

Thefinal field in the route output contains the name of the interface through which the destination is
reachable. This can be any interface known to the kernel which has an |P address. In Example D.2,
“Viewing a complex routing table with route” we can learn immediately that 192.168.98.0/24 is reach-
ablethrough interface et h2.

After this brief examination of the commonest of output from route, let's look at some of the other
things we can learn from route and a so how we can change the routing table.

1.3. Using route to display the routing cache

Therouting cache is used by the kernel as alookup table analogous to a quick reference card. It's faster
for the kernel to refer to the cache (internally implemented as a hash table) for arecently used route
than to lookup the destination address again. Routes existing in the route cache are periodically expired.
If you need to clean out the routing cache entirely, you'll want to become familiar with ip route flush
cache.

At first, it might surprise you to learn that there are no entries for locally connected networks in a rout-
ing cache. After ahit of reflection, you come to realize that there is on need to cache an IP route for alo-
cally connected network because the machine is connected to the same Ethernet. So, any given destina-
tion has an entry in either the arp table or in the routing cache. For a clearer picture of the differences be-
tween each of the cached routse, 1'd suggest adding a- e switch.

Example D.3. Viewing therouting cache with route

[root @ristan]# route -Cen
Kernel IP routing cache

Sour ce Desti nati on Gat eway Fl ags MSS Wndow irtt Iface
194.52.197.133 192.168.99.35 192. 168. 99. 35 I 40 0 0Olo
192.168.99.35 194.52.197.133 192.168.99. 254 1500 0O 29 ethoO
192.168.99.35 192.168.99. 254 192. 168. 99. 254 1500 0O 0 ethO
192. 168.99. 254 192.168.99.35 192. 168. 99. 35 il 40 0 0Olo
192.168.99.35 192.168.99.35 192. 168. 99. 35 I 16436 0 0Olo
192.168.99.35 194.52.197.133 192.168.99. 254 1500 0O 0 ethO
192.168.99.35 192.168.99. 254 192. 168. 99. 254 1500 0O 0 ethO

118

http://www.isi.edu/in-notes/rfc1878.txt
http://www.isi.edu/in-notes/rfc1878.txt

IP Route Management

FIXME! | don't really know why there are three entriesin the routing cache for each destination. Here,
for example, we see three entries in the routing cache for 194.52.197.133 (a Swedish destination).

The MSS column tells us what the path MTU discovery has determined for a maximum segment size for
the route to this destination. By discovering the proper segment size for aroute and caching this infor-
mation, we can make most efficient use of bandwidth to the destination, without incurring the overhead
of packet fragmentation enroute. See Section 10.1, “MTU, MSS, and ICMP” for a more complete dis-
cussion of MSSand MTU.

FIXME! There has to be more we can say about the routing cache here.

1.4. Creating a static route with route add

Static routes are explicit routes to non-local destinations through routers or gateways which are not the
default gateway. The case of the routing tableont ri st an isaclassic example of the need for a stat-
ic route. There are two routersin the same network, masq- gwandi sdn-rout er.Iftri st an has
packets for the 192.168.98.0/24 network, they should be routed to 192.168.99.1 (i sdn-r out er). Re-
fer also to Section 3.3, “Adding and removing a static route” for this example.

Aswith ifconfig, route has a syntax unlike most standard unix command line utilities, mixing options
and arguments with less regularity. Note the mandatory - net or - host options when adding or re-
moving any route other than the default route.

In order to add a static route to the routing table, you'll need to gather several pieces of information
about the remote network.

In our example network, masqg- gw can only reach 10.38.0.0/16 through ser vi ce- r out er . Let's add
a static route to the masquerading firewall to ensure that 10.38.0.0/16 is reachable. Our intended rout-
ing table will look like the routing table in Example D.2, “Viewing a complex routing table with route”.
Let'saso view the output if we mistype the I P address of the default gateway and specify an address
which isnot alocally reachable address.

Example D.4. Adding a static routeto a network route add

[root @easqg-gw # route add -net 10.38.0.0 netnmask 255.255.0.0 gw 192. 168. 109. 1
S| OCADDRT: Networ k i s unreachabl e
[root @easqg-gw # route add -net 10.38.0.0 netnmask 255.255.0.0 gw 192. 168. 100. 1

It should be clear now that the gateway address must be reachable on alocally connected network for a
static route to be useable (or even make sense). In the first line, where we mistyped, the route could not
be added to the routing table because the gateway address was not a reachable address.

Now, instead of sending packets with a destination of 10.38.0.0/16 to the default gateway, wan- gw,
masq- gwwill send thistrafficto ser vi ce-r out er at IP address 192.168.100.1.

The above is asimple example of routing a network to a separate gateway, a gateway other than the de-
fault gateway. Thisisacommon need on networks central to an operation, and less common in branch
offices and remote networks.

Occasionaly, however, you'll have a single machine with an IP address in a different range on the same
Ethernet as some other machines. Or you might have a single machine which is reachable via arouter.
Let'slook at these two scenarios to see how we can create static routes to solve this routing need.

119

IP Route Management

Occasionally, you may have a desire to restrict communication from one network to another by not in-
cluding routes to the network. In our sample network, t r i st an may be aworkstation of an employee
who doesn't need to reach any machines in the branch office. Perhaps this employee needs to periodical-
ly access some data or service supplied on 192.168.98.101. Wel'll need to add a static route to allow this
machine to access this single host | P in the branch office network 2,

Here's a summary of the required data for our static route. The destination is 192.168.98.101/32 and the
gateway is192.168.99.1.

Example D.5. Adding a static routeto a host with route add

[root @ristan]# route add -host 192.168.98.101 gw 192. 168.99.1
[root@ristan]# route -n
Kernel IP routing table

Desti nation Gat eway Genmask Flags Metric Ref Use | face
192.168.98. 101 192.168.99.1 255. 255. 255. 255 UG 0 0 0 ethO
192.168.99.0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

Now, we have successfully atered the routing table to include a host route for the single machine we
want our employee to be able to reach.

Even rarer, you may encounter a situation where a single Ethernet network is used to host multiple IP
networks. There are reasons people might do this, although | regard thisis bad form. If possible, it is
cleaner, more secure, and easier to troubleshoot if you do not share IP networks on the same media seg-
ment. With that said, you can still convince your linux box to be a part of each network 3,

Let's assume for the sake of this example that NAT is not an option for us, and we need to move the ma-
chine 205.254.211.184 into another network. Though it violates the concept of security partitioning, we
have decided to put the server into the same network asser vi ce- r out er . Naturally, we'll need to
modify the routing table on masq- gw.

Be sureto refer to Section 3, “Breaking a network in two with proxy ARP” for a complete discussion of
this unusual networking scenario.

Example D.6. Adding a static routeto a host on the same media with route add
[root @mesqg-gw # route add -host 205.254.211. 184 dev eth3

I'll leave as an exercise to the reader's imagination the question of how to send al traffic to alocally
connected network to an interface. In light of the host route above, it should be alogical step for the
reader to make.

The above are common exampl es of the usage of the route command.

2 Thought ri st an does not have adirect route to the 192.168.98.0/24 network, it does have a default route which knows about this destina-
tion network. Therefore, for the purposes of thisillustrative example, we'll assume that masqg- gwis configured to drop or reject all traffic to
192.168.98.0/24 from 192.168.99.0/24 and vice versa. Effectively this means that the only path to reach the branch office from the main officeis
viai sdn-router.

3 There can potentially be routing problems with multiple | P networks on the same media segment, but if you can remember that IP routing is es-
sentially stateless, you can plan around these routing problems and solve these problems. For afuller discussion of these issues, see Section 4,
“Multiple IPs on an Interface” and Section 2, “Multiple P Networks on one Ethernet Segment”.

120

IP Route Management

1.5. Creating a default route with route add default

The default route is a specia case of a static route. Any machine which is connected to the Internet has
adefault route. For the majority of smaller networks which are not running dynamic routing protocols,
each machine on an internal network uses arouter or firewall asits default gateway, forwarding all traf-
fic to that destination. Typically, this router or firewall forwards the traffic to the next router or device
viaa static route until the traffic reaches the | SP's service access router. Many |1SPs use dynamic routing
internally to determine the best path out of their networks to remote destinations.

But we are only interested in adding a default route and understanding that packets are reaching the de-
fault gateway. Once the packets have reached the default gateway, we assume that the administrator of
that device is monitoring its correct operation.

With this bit of background about the default route, it is easy to see why a default route is akey part of
any networking device's configuration. If the machineis to reach machines other than the machines on
the local network, it must know the address of the default gateway.

Because the default gateway is so important, there is particular support for adding a default route includ-
ed in the route command. Refer to Example 1.8, “Adding a default route with route” for a simple exam-
ple of adding a default route. The syntax of the command is as follows:

Example D.7. Setting the default route with route
[root @ristan]# route add default gw 192. 168. 99. 254

Thisisthe commonest method used for setting a default route, although the route can also be specified
by the following command. | find the alternate method more explicit than the common method for set-
ting default gateway, because the destination address and network mask are treated exactly like any oth-
er network address and netmask.

Example D.8. An alternate method of setting the default route with route
[root@ristan]# route add -net 0.0.0.0 netrmask 0.0.0.0 gw 192. 168. 99. 254

The alternate method of setting a default route specifies a network and netmask of 0, which is shorthand
for all destinations. I'll reiterate that the kernel sees these two methods of setting the default route as
identical. The resulting routing table is exactly the same. Y ou may select whichever of these route invo-
cations you find more comfortable.

Now that we have covered adding static routes and the specia static route, the default route, let'stry our
hand at removing existing routes from routing tables.

1.6. Removing routes with route del

Any route can be removed from the routing table as easily as it can be added. The syntax of the com-
mand is exactly the same as the syntax of the route add command.

After we went to all of the trouble above to put our machine 205.254.211.184 into the network with
servi ce-rout er, we probably realize that from a security partitioning standpoint, it is not only stu-

121

IP Route Management

pid, but also foolhardy! So now, we conclude that we need to return 205.254.211.184 to its former net-
work (the DMZ proper). We'll now remove the special host route for its I P, so the network route for
205.254.211.0/24 will now be used for reaching this host. (If you have questions about why, read Sec-
tion 5, “Route Selection”.)

Example D.9. Removing a static host route with route del

[root @masg-gw] # route -n
Kernel IP routing table

Desti nati on Gat eway Genmask Fl ags Metric Ref Use Iface
205. 254.211.184 0.0.0.0 255. 255. 255. 255 U 0 0 0 eth3
192.168.100.0 0.0.0.0 255. 255. 255. 252 U 0 0 0 eth3
205.254.211.0 0.0.0.0 255. 255. 255. 0 U 0 0 0 ethl
192.168.100.0 0.0.0.0 255. 255. 255. 0 U 0 0 0 ethO
192. 168.99. 0 0.0.0.0 255. 255. 255. 0 U 0 0 0 eth2
192.168.98.0 192.168.99. 1 255. 255. 255. 0 UG 0 0 0 eth2
10.38.0.0 192. 168. 100. 1 255.255.0.0 UG 0 0 0 eth3
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 Olo
0.0.0.0 205. 254.211. 254 0.0.0.0 UG 0 0 0 ethl
[root @masg-gw] # route del -host 205.254.211.184 dev eth3

Another possible example might be the prohibition of Internet traffic to a particular user. If amachine

does not have a default route, but instead has a routing table populated only with routes to internal net-

works, then that machine can only reach IP addresses in networks to which it has arouting table en-

try. Let's say that you have a user who routinely spends work hours browsing the Internet, fetching mail

from a POP account outside your network, and in short wastes time on the Internet. Y ou can easily pre-

vent this user from reaching anything except your internal networks. Naturally, this sort of a problem

empl oyee should probably face some sort of administrative sanction to address the real problem, but asa
technical component of the strategy to prevent this user from wasting time on the Internet, you could re-

move access to the Internet from this employee's machine.

In the below example, we'll use the route command a number of times for different operations, al of

which you should be familiar with by now.

Example D.10. Removing the default route with route del

[root @organ] # route -n

Kernel IP routing table

Desti nation Gat eway Genmask Flags Metric Ref Use | face
192.168.98.0 0.0.0.0 255. 255. 255. 0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 Olo
0.0.0.0 192.168.98.254 0.0.0.0 UG 0 0 0 ethO

[root @organ] # route del default gw 192.168. 98. 254

[root @organ] # route add -net 192.168.99. 0 net mask 255. 255. 255. 0 gw 192. 168. 98. 254
[root @organ] # route add -net 192.168. 100. 0 net mask 255. 255. 255. 0 gw 192. 168. 98. 25
[root @organ] # route add -net 205.254.211.0 net mask 255.255.255.0 gw 192. 168. 98. 25
[root @organ] # route -n

Kernel IP routing table

Desti nation Gat eway Genmask Flags Metric Ref Use | face
205.254.211.0 192.168.98. 254 255.255.255.0 U 0 0 0 ethO
192.168. 100. 0 192. 168. 98. 254 255.255.255.0 U 0 0 0 ethO

122

IP Route Management

192. 168. 99. 0 192. 168. 98. 254 255. 255. 255. 0 U 0 0 0 ethO
192. 168. 98. 0 0.0.0.0 255. 255.255. 0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 Olo

Now, the user on nor gan can only reach the specified networks. The networks we have entered here
areadl of our corporate networks. If the user tries to generate a packet to any other destination, the kernel
is not going to know where to send it, so will return in error code to the application trying to make the
network connection.

While this can be a very effective way to restrict access to an individual machine, it is an ineffective
method of systems administration, sinceit requires that the user log in to the affected machine and make
changes to the routing table on demand. A better solution would be to use packet filter rules.

2.1p route

Another part of theiproute2 suite of tools for |P management, ip r oute provides management tools for
manipulating any of the routing tables. Operations include displaying routes or the routing cache, adding
routes, deleting routes, modifying existing routes, and fetching a route and clearing an entire routing ta-
ble or the routing cache.

One thing to keep in mind when using the ip routeis that you can operate on any of the 255 routing ta-
bles with this command. Where the r oute command operated only on the main routing table (table 254),
the ip route command operates by default on the main routing table, but can be easily coaxed into using
other tableswith thet abl e parameter.

Fortunately, as mentioned earlier, the iproute2 suite of tools does not rely on DNS for any operation so,
the ubiquitous - n switch in previous examples will not be required in any example here.

All operations with the ip route command are atomic, so each command will return either RTNETLI NK
answers: No such process inthecaseof an error, or nothing in the face of success. The- s
switch which provides additional statistical information when reporting link layer information will on-
ly provide additional information when reporting on the state of the routing cache or fetching a specific
route..

Theip route utility when used in conjunction with the ip rule utility can create stateless NAT tables. It
can even manipulate the local routing table, arouting table used for traffic bound for broadcast address-
es and | P addresses hosted on the machine itself.

In order to understand the context in which thistool runs, you need to understand some of the basics of
IProuting, so if you have read the above introduction to theip routetool, and are confused, you may
want to read Chapter 4, IP Routing and grasp some of the concepts of |P routing (with linux) before con-
tinuing here.

2.1. Displaying a routing table with ip route show
Initssimplest form, ip route can be used to display the main routing table output. The output of this
command is significantly different from the output of the route. For comparison, let's look at the output

of both route -n and ip route show.

Example D.11. Viewing the main routing table with ip route show

[root@ristan]# route -n

123

IP Route Management

Kernel IP routing table

Desti nation Gat eway Genmask Fl ags Metric Ref Use | face
192. 168.99. 0 0.0.0.0 255.255.255.0 U 0 0 0 ethO
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0Olo
0.0.0.0 192.168.99.254 0.0.0.0 UG 0 0 0 ethO

[root@ristan]# ip route show
192. 168. 99. 0/ 24 dev ethO scope |ink
127.0.0.0/8 dev I o scope |ink
default via 192.168.99. 254 dev ethO

If you are accustomed to the route output format, the ip route output can seem terse. The same basic
information is displayed, however. Aswith our former example, let'signore the 127.0.0.0/8 loopback
route for the moment. Thisis arequired route for any 1Ps hosted on the loopback interface. We are far
more interested in the other two routes.

The network 192.168.99.0/24 is available on ethO with a scope of link, which means that the network is
valid and reachable through this device (eth0). Refer to Table C.2, “1P Scope under ip address’ for def-
initions of possible scopes. Aslong as link remains good on that device, we should be able to reach any
IP address inside of 192.168.99.0/24 through the ethO interface.

Finally, our all-important default route is expressed in the routing table with the word default. Note that
any destination which is reachable through a gateway appearsin the routing table output with the key-
word vi a. Thisfinal line matches semantically with the final line of output from route -n above.

Now, let's have alook at the local routing table, which we can't see with route. To be fair, it isusually
completely unnecessary to view and/or manipulate the local routing table, which iswhy route provides
no way to access this information.

Example D.12. Viewing thelocal routing table with ip route show table local

[root@ristan]# ip route show table | oca

| ocal 192.168.99.35 dev ethO proto kernel scope host src 192.168.99. 35

br oadcast 127.255.255.255 dev |o proto kernel scope link src 127.0.0.1

br oadcast 192. 168. 99. 255 dev ethO proto kernel scope link src 192.168.99.35
broadcast 127.0.0.0 dev Ilo proto kernel scope link src 127.0.0.1

| ocal 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1

| ocal 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1

This gives us agood deal of information about the | P networks to which the machine is directly connect-
ed, and an inside look into the way that the routing tables treat special addresses like broadcast addresses
and locally configured addresses.

Thefirst field in this output tells us whether the route is for a broadcast address or an | P address or range
locally hosted on this machine. Subsequent fields inform us through which device the destination is
reachable, and notably (in this table) that the kernel has added these routes as part of bringing up the IP
layer interfaces.

For each I P hosted on the machine, it makes sense that the machine should restrict accessiblity to that
IPor IPrangetoitself only. This explainswhy, in Example D.12, “Viewing the local routing table with
ip route show tablelocal”, 192.168.99.35 has a host scope. Becauset r i st an hosts this P, there's no
reason for the packet to be routed off the box. Similarly, a destination of localhost (127.0.0.1) does not
need to be forwarded off this machine. In each of these cases, the scope has been set to host.

124

IP Route Management

For broadcast addresses, which are intended for any listeners who happen to share the IP network, the
destination only makes sense as for a scope of devices connected to the same link layer 4

Thefina characteristic available to usin each line of the local routing table output isthe sr ¢ keyword.
Thisistreated as a hint to the kernel about what 1P address to select for a source address on outgoing
packets on this interface. Naturally, thisis most commonly used (and abused) on multi-homed hosts, a-
though almost every machine out there uses this hint for connections to localhost 5,

Now that we have inspected the main routing table and the local routing table, let's see how easy it is

to look at any one of the other routing tables. Thisis as simple as specifying the table by its namein /
etc/iproute2/rt_tabl es or by number. There are afew reserved table identifiersin thisfile, but
the other table numbers between 1 and 252 are available for the user. Please note that this exampleisfor
demonstration only and has no intrinsic value other than showing the use of thet abl e parameter.

Example D.13. Viewing a routing table with ip route show table

[root@ristan]# ip route show tabl e speci al
Error: argunent "special" is wong: table id value is invalid

[root@ristan]# echo 7 special >> /etc/iproute2/rt_tables
[root@ristan]# ip route show tabl e speci al

[root@ristan]# ip route add table special default via 192. 168. 99. 254
[root@ristan]# ip route show tabl e speci al

default via 192.168.99. 254 dev et hO

In the above example you get afirst glance at how to add a route to atable other than the main routing
table, but what we arereally interested in is the final command and output. In Example D.13, “View-
ing arouting table with ip route show table”, we have identified table 7 by the name "specid” and have
added aroute to thistable. Thecommandi p route show tabl e speci al showsusrouting ta-
ble number 7 from the kernel.

ip route consults/ et ¢/ i prout e2/ rt _t abl es for atable identifier. If it finds no identifier, it com-
plainsthat it cannot find a reference to such atable. If atableidentifier isfound, then the corresponding
routing table is displayed.

The use of multiple routing tables can make arouter very complex, very quickly. Using names instead
of numbers for these tables can assist in the management of this complexity. For further discussion on
managing multiple routing tables and some issues of handling them see Section 3, “Using the Routing
Policy Database and Multiple Routing Tables’.

2.2. Displaying the routing cache with ip route show
cache

The routing cache is used by the kernel as alookup table analogous to a quick reference card. It's faster
for the kernel to refer to the cache (internally implemented as a hash table) for a recently used route than
to lookup the destination address again. Routes existing in the route cache are periodically expired.

4I'm going to specifically neglect a discussion of bridging and broadcast addresses for now. Let's assume a simple Ethernet where the entire IP
network is on one hub or switch.

5 When a user initiates a connection to localhost (let's say localhost:25, where a private SMTP server islistening), the connection could, of
course, come from the I P assigned to any of the Ethernet interfaces. It makes the most sense, however, for the source I P to be set to 127.0.0.1,
since the connection is actually initiated from on the local machine. Some services running on alocal machine rely on the loopback interface and
will restrict incoming connections to source addresses of 127.0.0.1. Frankly, | find this quite sensible for services which are not intended for pub-
lic use.

125

IP Route Management

The routing cache can be displayed in al its glory with ip route show cache, which provides a detailed
view of recent destination |P addresses and salient characteristics about those destinations. On routers,
masguerading boxen and firewalls, the routing cache can become very large. Instead of viewing the en-
tire routing cache even on aworkstation, we'll select a particular destination from the routing cache to
examine.

Example D.14. Displaying the routing cache with ip route show cache

[root@ristan]# ip route show cache 192.168. 100. 17

192. 168. 100. 17 from 192. 168. 99. 35 via 192. 168. 99. 254 dev et hO
cache ntu 1500 rtt 18ns rttvar 15ns cwnd 15 advmss 1460

192. 168. 100. 17 via 192. 168. 99. 254 dev eth0O src 192.168.99. 35
cache ntu 1500 advnss 1460

FIXME! | don't know how to explain rtt, rttvar, and cwnd, even after reading Alexey's commentsin the
iproute2 documentation! Not only that, I'm not sure why there are two entries!

The output in Example D.14, “Displaying the routing cache with ip route show cache” summarizes the
reachability of the destination 192.168.100.17 from 192.168.99.35. Thefirst line of each entry provides

some important information for us. the destination I P, the source | P, the gateway through which the des-
tination is reachable, and the interface through which packets were routed. Together, these data identify

aroute entry in the cache.

Characteristics of that route are summarized in the second line of each entry. For the route between
tristanandi sol de, we seethat Path MTU discovery has identified 1500 bytes as the maximum
packet size from end to end. The maximum segment size (MSS) of datais 1460 bytes. Although thisis
not usually of any but the most casual of interest, it can be helpful diagnostic information.

If you are adie-hard fan of statistics, and can't get enough information about the routing on your ma-
chine, you can always throw the - s switch.

Example D.15. Displaying statistics from the routing cache with ip -sroute show
cache

[root@ristan]# ip -s route show cache 192. 168. 100. 17
192. 168. 100. 17 from 192. 168.99. 35 via 192. 168. 99. 254 dev et hO

cache wusers 1 used 326 age 12sec ntu 1500 rtt 72ns rttvar 22ms cwnd 2 advnss
192. 168. 100. 17 via 192. 168. 99. 254 dev eth0 src 192.168.99. 35

cache wusers 1 used 326 age 12sec ntu 1500 advnss 1460

With this output, you'll get just a bit more information about the routes. The most interesting datum is
usually the "used" field, which indicates the number of times this route has been accessed in the routing
cache. This can give you avery good idea of how many times a particular route has been used. The age
fieldis usgad by the kernel to decide when to expire a cache entry. The ageis reset every timetherouteis
accessed °.

In sum, you can use the routing cache to learn a good deal about remote I P destinations and some of the
characteristics of the network path to those destinations.

5Be wary of using ip route get and ip route show cache because ip route get implicitly causes a route lookup to be performed, thus increasing
the used counter on the route, and resetting the age. Thiswill alter the statistics reported by ip -s route show cache.

126

IP Route Management

2.3. Using ip route add to populate a routing table

ip route add isa used to populate a routing table. Although you can use route add to do the same thing,
ip route add offers alarge number of options that are not possible with the venerable r oute command.
After we have looked at some simple examples, we'll discuss more complex routes with ip route.

In Section 1, “route”, we used two classic examples of adding a network route (to our service provider's
network from) and a host route. Let'slook at the difference in syntax with theip route command.

Example D.16. Adding a static route to a network with route add, cf.
Example D .4, “ Adding a static route to a network route add”

[root @esqg-gw # ip route add 10.38.0.0/16 via 192.168. 100.1

Thisis one of the simplest examples of the syntax of the ip route. Asyou may recall, you can only add a
route to a destination network through a gateway that isitself already reachable. In this case, masq- gw
already knows aroute to 192.168.100.1 (ser vi ce- r out er). Now any packets bound for 10.38.0.0/16
will be forwarded to 192.168.100.1.

Other interesting examples of this command involve the use of pr ohi bi t and f r om Use of the pr o-
hi bi t will cause the router to report that the requested destination is unreachable. If you know a net-
block that hosts a service you are not interested in allowing your users to access, this is an effective way
to block the outbound connection attempts.

Let'slook at an example of tcpdump output which showsthe pr ohi bi t routein action.

Example D.17. Adding a pr ohi bi t routewith route add

[root @masqg-gw # i p route add prohi bit 209.10.26.51

[root @ristan]# ssh 209. 10. 26. 51

ssh: connect to address 209.10.26.51 port 22: No route to host

[root @measqg-gw # tcpdunp -nng -i eth2

tcpdunp: |istening on eth2

22:13:13. 740406 192. 168.99. 35.51973 > 209. 10. 26.51.22: tcp 0 (DF)

22:13:13. 740714 192.168.99. 254 > 192.168.99. 35: icnp: host 209. 10. 26. 51 unr eachabl

Compare the ICMP packet returned to the sender in this case with the ICMP packet returned if you used
iptables and the REJECT target 4 Although the net effect isidentical (the user is unable to reach the in-
tended destinatioan), the user gets two different error messages. With an iptables REJECT, the user sees
Connection refused, wheretheuser seesNo route to host withtheuseof prohi bit.
These are but two of the options for controlling outbound access from your network.

Supposing you don't want to block access to this particular host for all of your users, the f r omoption
comes to your aid.

Example D.18. Using f r omin arouting command with route add

" Please note that | in the cross-referenced example | have used iptables. The same behaviour should be expected with ipchains. (Anybody have
any proof?)

127

IP Route Management

[root @masqg-gw # i p route add prohi bit 209.10.26.51 from 192. 168. 99. 35

Now, you have effectively blocked the source 1P 192.168.99.35 from reaching 209.10.26.51. Any pack-
ets matching this source and destination address will match this route. In this case, masq- gwwill gen-
erate an ICMP error message indicating that the destination is administratively unreachable.

If you are till following along here, you can see that the options for identifying particular routes are
many and multi-faceted. The sr ¢ option provides a hint to the kernel for source address selection.
When you are working with multiple routing tables and different classes of traffic, you can ease your ad-
ministrative burden, by hosting several different |Ps on your linux machine and setting the source ad-
dress differently, depending on the type of traffic.

In the example below, let's assume that our masquerading host also runs a DNS resolver for the internal
network and we have selected all of the outbound DNS packets to be routed according to table 7 8 Now,

any packet which originates on this box (or is masqueraded through this table) will have its source | P set
t0 205.254.211.198.

Example D.19. Using sr ¢ in arouting command with route add
[root @masqg-gw]# ip route add default via 205.254.211. 254 src 205.254.211.198 table
FIXME!! | have nothing to say about next hop yet, because | have never used it, this goesfor equal -

i ze andonl i nk aswell. If anybody has some examples s’he would like to contribute, I'd love to hear.

There are other options to theip route add documented in Alexey's thorough iproute2 documentation.
For further research, I'd suggested acquiring and reading this manual .

2.4. Adding a default route with ip route add default

Naturally, one of the most important routes on amachine isits default route. Adding adefault routeis
one of the simplest operations with ip route.

We need exactly one piece of information in order to set the default route on a machine. Thisisthe IP

address of the gateway. The syntax of the command is extremely simple and aside from the use of the
vi a instead of gw, it is almost the same command as the equivalent route -n.

Example D.20. Setting the default route with ip route add default

[root@ristan]# ip route add default via 192.168. 99. 254

2.5. Setting up NAT with ip route add nat

Be sure to see Chapter 5, Network Address Translation (NAT) for afull treatment of the issues involved
in network address trandlation (NAT). If you are here to learn a bit more about how to set up NAT in
your network, then you should know that the ip route add nat isonly half of the solution. Y ou must un-
derstand that performing NAT with iproute2 involves one component to rewrite the inbound packet (ip

81t you wonder how this kind of magic is accomplished, you'll want to read Section 3.2, “Using fwmark for Policy Routing”.

128

IP Route Management

route add nat), and another command to rewrite the outbound packet (ip rule add nat). If you only get
half of the system in place, your NAT will only work halfway--or not at al, depending on how you de-
fine "work".

Alexey documents clearly in the appendix to the iproute2 manual that the NAT provided by the
iproute? suiteis stateless. Thisisdistinctly unlike NAT with netfilter. Refer to Section 5, “ Destination
NAT with netfilter (DNAT)” and Section 3, “Netfilter Connection Tracking” for a better look at the con-
nection tracking and network address transl ation support available under netfilter.

Theip route add nat command is used to rewrite the destination address of a packet from one IP or
range to another IP or range. Theiproute2 tools can only operate on the entire |P packet. Thereis no
provision directly within the iproute? suite to support conditional rewriting based on the destination
gort of aUDP datagram or TCP segment. It's the whole packet, every packet, and nothing but the packet

Example D.21. Creating a NAT routefor asingle P with ip route add nat

[root @masqg-gw] # ip route add nat 205.254.211.17 via 192. 168. 100. 17
[root @easqg-gw]# ip route show table local | grep “nat
nat 205.254.211.17 via 192.168. 100.17 scope host

The route entry we have just made tells the kernel to rewrite any inbound packet bound for
205.254.211.17 t0 192.168.100.17. The actual rewriting of the packet occurs at the routing stage of the
packets trip through the kernel. Thisis an important detail, illuminated more fully in Section 4, “ State-
less NAT and Packet Filtering”.

Not only can iproute2 support network address trandation for single 1Ps, but also for entire network
ranges. The syntax is substantially similar to the syntax above, but uses a CIDR network address instead
of asingle IP.

Example D.22. Creating a NAT routefor an entire network with ip route add nat

[root @masqg-gw # i p route add nat 205.254.211.32/29 via 192. 168. 100. 32
[root @masqg-gw] # ip route show table |ocal | grep “nat
nat 205.254.211.32/29 via 192. 168. 100. 32 scope host

In this example, we are adding a route for an entire network. Any | P packets which come to us destined
for any address between 205.254.211.32 and 205.254.211.39 will be rewritten to the corresponding ad-
dressin the range 192.168.100.32 through 192.168.100.39. Thisis a shorthand way to specify multiple
trandations with CIDR notation.

Again, thisisonly one half of the story for NAT with iproute2. Please be certain to read the section
below for usage information onip rule add nat, in addition to Chapter 5, Network Address Tranda-
tion (NAT) which will provide fuller documentation for NAT support under linux. Don't forget to useip
route flush cache after you add NAT routes and the corresponding NAT rules 1°.

9 This should not lead you into believing it cannot be done. Thisislinux after al! By routing via fwmark, and using the - - mar k option to
ipchains or the MARK target and - - set - mar k option in iptables, you can perform conditional routing based on characteristics and contents of

©voucan aways use my SysV initialization script and configuration file instead of entering your own commands, howevey, it is always impor-
tant to understand the tool you are using.

129

IP Route Management

2.6. Removing routes with ip route del

Theip route del takes exactly the same syntax astheip route add command, so if you have familiar-
ized yourself with the syntax, this should be a snap.

Itis, infact, amost trivial to delete routes on the command line with ip route del. Y ou can simply iden-
tify the route you wish to remove with ip route show command and append the output line verbatim to
ip route ddl.

Example D.23. Removing routes with ip route del 1!

[root @measqg-gw # i p route show

192. 168. 100. 0/ 30 dev eth3 scope |ink

205. 254.211. 0/ 24 dev ethl scope |ink

192. 168. 100. 0/ 24 dev ethO scope |ink

192. 168. 99. 0/ 24 dev ethO scope |ink

192.168.98. 0/ 24 via 192.168.99.1 dev ethO

10.38.0.0/16 via 192.168.100.1 dev eth3

127.0.0.0/8 dev o scope |ink

default via 205.254.211. 254 dev ethl

[root @asqg-gw # ip route del 10.38.0.0/16 via 192.168.100.1 dev eth3

We identified the network route to 10.38.0.0/16 as the route we wished to remove, and simply appended
the description of the route to our ip route del command.

This command can be used to remove routes such as broadcast routes and routes to locally hosted |Ps
in addition to manipulation of any of the other routing tables. This means that you can cause some very
strange problems on your machine by inadvertently removing routes, especially routesto locally hosted
| P addresses.

2.7. Altering existing routes with ip route change

Occasionadly, you'll want to remove aroute and replace it with another one. Fortunately, this can be
done atomically with ip route change.

Let's change the default route on tristan with this command.

Example D.24. Altering existing routes with ip route change

[root@ristan]# ip route change default via 192.168.99. 113 dev et hO
[root@ristan]# ip route show

192. 168.99. 0/ 24 dev ethO scope |ink

127.0.0.0/8 dev o scope link

default via 192.168.99. 113 dev ethO

If you do use the ip route change command, you should be aware that it does not communicate a rout-
ing table state change to the routing cache, so here is another good place to get in the habit of using ip
route flush cache.

1 Please note that thisis the same routing table as is shown in the Example D.2, “Viewing a complex routing table with route”, which displays
the output from route -n on masq- gw.

130

IP Route Management

There's not much more to say about the use of this command. If you don't want to use an ip route del
immediately followed by an ip route add you can use ip route change.

2.8. Programmatically fetching route information with ip
route get

When configuring routing tables, it is not always sufficient to search for the destination manually. Es-
pecially with large routing tables, this can become a rather boring and time-consuming endeavor. Fortu-
nately, ip route get elegantly solvesthe problem. By simulating a request for the specified destination,
ip route get causes the routing selection agorithm to be run. When this is complete, it prints out the re-
sulting path to the destination. In one sense, thisis almost equivalent to sending an ICMP echo request
packet and then using ip route show cache.

Example D.25. Testing routing tableswith ip route get

[root@ristan]# ip -s route get 127.0.0.1/32
ip -s route get 127.0.0.1/32
|l ocal 127.0.0.1 dev lo src 127.0.0.1
cache <local > wusers 1 used 1 ntu 16436 advnss 16396
[root@ristan]# ip -s route get 127.0.0.1/32
|l ocal 127.0.0.1 dev lo src 127.0.0.1
cache <local > wusers 1 used 2 ntu 16436 advnss 16396

For casual use, ip route get is an invaluable tool. An obvious side effect of using ip route get thein-
crease in the usage count of every touched entry in the routing cache. While thisis no problem, it will
alter the count of packets which have used that particular route. If you are using ip to count outbound
packets (people have done it!) you should be cautious with this command.

2.9. Clearing routing tables with ip route flush

Thef | ush option, when used with ip route empties arouting table or removes the route for a particu-
lar destination. In Example D.26, “Removing a specific route and emptying arouting table with ip route
flush”, we'll first remove aroute for a destination network using ip route flush, and then we'll remove
all of the routes in the main routing table with one command.

If you do not wish to delete routes by hand, you can quickly empty all of the routes in atable by specify-
ing atable identifier to theip route flush command.

Example D.26. Removing a specific route and emptying a routing tablewith ip
route flush

[root @masqg-gw # ip route flush

"ip route flush" requires argunents

[root @masqg-gw # ip route flush 10. 38

Not hing to flush

[root @masqg-gw # ip route flush 10.38.0.0/16
[root @masqg-gw # i p route show

192. 168. 100. 0/ 30 dev eth3 scope |ink

205. 254. 211. 0/ 24 dev ethl scope |ink

131

IP Route Management

192. 168. 100. 0/ 24 dev ethO scope |ink
192. 168. 99. 0/ 24 dev ethO scope |ink
192.168.98. 0/ 24 via 192.168.99.1 dev ethO
127.0.0.0/8 dev I o scope |ink

default via 205.254.211. 254 dev ethl
[root @asqg-gw # ip route flush table main
[root @masqg-gw # i p route show

[root @rasq- gw] #

Note that you should exercise caution when using ip route flush table because you can easily destroy
your own route to the machine by specifying the main routing table or a routing table that is used to send
packets to your workstation. Naturally, thisis not a problem if you are connected to the machineviaa
serial, modem, console, or other out of band connection.

2.10. ip route flush cache

Above, in Section 2.2, “ Displaying the routing cache with ip route show cache”, we looked at the con-
tents of the routing cache, a hash table in the kernel which contains recently used routes. To quote John
S. Denker, you should not forget to use ip route flush cache after you have changed the routing tables;
"otherwise changes will take effect only after some maddeningly irreproducible delay.” 12

Since the kernel refers to the routing cache before fetching a new route from the routing tables, ip route
flush cache empties the cache of any data. Now when the kernel goes to the routing cache to locate the
best route to a destination, it finds the cache empty. Next, it traverses the routing policy database and
routing tables. When the kernel finds the route, it will enter the newly fetched destination into the rout-
ing cache.

Example D.27. Emptying the routing cache with ip route flush cache

[root @ristan]# ip route show cache
local 127.0.0.1 from 127.0.0.1 tos 0x10 dev |lo
cache <local> mu 16436 advnss 16396
local 127.0.0.1 from 127.0.0.1 dev |lo
cache <local> mu 16436 advnss 16396
192. 168. 100. 17 from 192. 168. 99. 35 via 192. 168. 99. 254 dev et hO
cache ntu 1500 rtt 18ns rttvar 15ns cwnd 15 advnss 1460
192. 168. 100. 17 via 192. 168. 99. 254 dev eth0O src 192.168.99. 35
cache ntu 1500 advnss 1460
[root@ristan]# ip route flush cache
[root @ristan]# ip route show cache
[root @ristan]# ip route show cache
local 127.0.0.1 from 127.0.0.1 tos 0x10 dev |lo
cache <local> mu 16436 advnss 16396
local 127.0.0.1 from 127.0.0.1 dev |lo
cache <local> mu 16436 advnss 16396

When making routing changes to alinux box, you can save yourself some troubleshooting time (and
confusion) by getting in the habit of finishing your routing commands with ip route flush cache.

12 see this remark in his documentation [http://www.quintillion.com/moat/i psec+routing/iproute2.html] of aworkaround with FreeS'WAN and
iproute2 to approximate more RFC-like SPD behaviour for alinux 1PSec tunnel.

132

http://www.quintillion.com/moat/ipsec+routing/iproute2.html
http://www.quintillion.com/moat/ipsec+routing/iproute2.html

IP Route Management

2.11. Summary of the use of ip route

3.1p

With this overview of the use of theip route utility, you should be ready to step into some advanced ter-
ritory to harness multiple routing tables, take advantage of special types of routes, use network address
translation, and gather detailed statistics on the usage of your routing tables.

rule

Another part of theiproute2 software package, ip ruleisthe single tool for manipulating the routing
policy database under linux (RPDB). For afuller discussion of the RPDB, see Section 3, “Using the
Routing Policy Database and Multiple Routing Tables’. The RPDB can be displayed with ip rule show.
Particular rules can be added and removed with (predictably, if you have been reading the sections on
the other iproute2 tools) ip rule add command and the ip rule del command. We'll make a particular
example of theip rule add nat.

3.1.ip rule show

Briefly, the RPDB mediates access to the routing tables. In the overwhelming majority of installations
(most workstations, servers, and even routers), there is no need to take advantage of the RPDB. A single
IProuting tableis all that is required for basic connectivity. In more complex networking configurations,
however, the RPDB allows the administrator to programmeatically select arouting table based on charac-
teristics of a packet.

Along with this freedom and flexibility comes the power to break networking in strange and unexpected
ways. | will reiterate: IP routing is stateless. Because | P routing is stateless, the network architect, plan-
ner or administrator needs to be aware of the issues involved with using multiple routing tables.

For afuller discussion of some of these issues, be sure to read Section 3, “Using the Routing Policy
Database and Multiple Routing Tables’. Now, let's ook at some of the waysto useip rule.

3.2. Displaying the RPDB with ip rule show

To display the RPDB, use the command ip route show. The output of the command isalist of rulesin
the RPDB sorted by order of priority. The rules with the highest priority will be displayed at the top of
the output.

Example D.28. Displaying the RPDB with ip rule show

[root @sol de]# ip rul e show
0: fromall |ookup |ocal
32766: fromall |ookup main
32767: fromall |ookup 253

There are some interesting items to observe here. First, these are the three default rules in the RPDB
which will be available on any machine with an RPDB. The first rule specifies that any packet from any
where should first be matched against routes in the local routing table. Remember that the local rout-
ing tableis for broadcast addresses on link layers, network address trand ation, and locally hosted I P ad-
dresses.

If apacket is not bound for any of these three destinations, the kernel will check the next entry in the
RPDB. In the ssimple case above, oni sol de, apacket bound for 205.254.211.182 would first pass

133

IP Route Management

through the local routing table without matching any of the local destinations. The next entry in the
RPDB recommends using the main routing table to select a destination route.

Ini sol de'smain routing table, it islikely that there is no host nor network match for this destination,
thus the packet will match the default route in the main routing table.

FIXME!! Can anybody (somebody?) explain to me why thereisarule priority 32767 which refersto ta-
ble 253? I'm still confused about this.

3.3. Adding arule to the RPDB with ip rule add

Adding arule to the routing policy database is simple. The syntax of the ip rule add command should
be familiar to those who have read Section 2, “ip route” or have used the ip route to populate routing
tables.

A simple rule selects a packet on the the packet's characteristics. Some characteristics available as selec-
tion criteria are the source address, the destination, the type of service (ToS), the interface on which the
packet arrived, and an fwmark.

One great way to take advantage of the RPDB is to split different types of traffic to different providers
based on packet characteristics. Let's assume two network connections on nasq- gw, one that is a high-
ly reliable high cost connection, and a much lower cost less reliable connection. Let's also assume that
we are using Type of Service flags on | P packets on the internal network.

We might want to prefer alow-latency, highly reliable link for one type of packet. By usingt os asase-
lection criterion with ip rule we can effectively route these packets via our faster and morereliable in-
ternet connection.

Example D.29. Creating a ssimple entry in the RPDB with ip rule add 13

[root @easg-gw] # i p route add default via 205.254.211.254 table 8
[root @easg-gw# ip rule add tos 0x08 table 8

[root @esqg-gw # ip route flush cache

[root @esqg-gw # ip rule show

0: fromall |ookup |ocal
32765: fromall tos 0x08 | ookup 8
32766: fromall |ookup main

32767: fromall |ookup 253

Note that the rule we inserted was added to the next available higher priority in the RPDB because we
did not specify apriority. If we wished to specify apriority, we could use pri o.

Now any packet with an IP ToS field matching 0x08 will be routed according to the instructionsin table
8. If no route in table 8 applies to the matched packet (not possible, since we added a default route), the
packet would be routed according to the instructionsin table "main".

The selection criteriafor matching a packet can be grouped. Let's look at a more complex example of ip
rule where we use multiple selection criteria.

13 please note that thisis an incomplete example. Simply put, I'm not dealing with the issues of inbound packets or packets destined for locally
connected networksin this example. Keep in mind the instructional nature of this example, and plan your own network accordingly. For afuller
discussion of the issues involved with handling multiple Internet links, see Section 4, “Multiple Connections to the Internet”. Note also, that there
is no corresponding network connection in the example network for this network connection.

134

IP Route Management

Example D.30. Creating a complex entry in the RPDB with ip rule add
[root @masqg-gwj# ip rule add from 192. 168. 100. 17 tos 0x08 fwmark 4 table 7

Frankly, that's avery complex rule! 1 do not know if | could describe a scenario where this particular
rule would be required. The point, though, isthat you can have arbitrarily complex selection criteria, and
multiple rules which lookup routes in as many of the 253 routing tables as you wish.

ip rule add, while a powerful tool, can quickly make arouting table or router too complex to easily un-
derstand. It'simportant to try to design and implement the simplest configuration to maintain on your
router. If you cannot avoid using multiple routing tables and the RPDB, at |east be systematic about it.

3.4.ip rule add nat

As discussed more thoroughly in Chapter 5, Network Address Translation (NAT), thisis the other half of
iproute? supported network address translation. The two components areip route add nat and ip rule
add nat.

ip rule add nat is used to rewrite the source | P on packets during the routing stage. Each packet from
therea IPistranslated to the NAT IP without altering the destination address of the packet.

NAT is commonly used to publish aservicein an internal network on a public IP. Thus packets return-
ing to the public network need to be readdressed to appear with a source address of the publicly accessi-
bly IP.

Example D.31. Creating a NAT rulewith ip rule add nat

[root @measqg-gwW # ip rule add nat 205.254.211.17 from 192. 168. 100. 17
[root @easqg-gw # ip rule show

0: fromall |ookup |ocal
32765: from 192. 168. 100. 17 | ookup mai n map-to 205. 254. 211. 17
32766: fromall |ookup main

32767: fromall |ookup 253

In more complex situations, entire subnets can be tranglated to provide NAT for arange of IPs. The ex-
ample below shows how to specify the ip rule add nat to complete the NAT mapping in Example D.22,
“Creating aNAT route for an entire network with ip route add nat”.

Example D.32. Creating a NAT rulefor an entire network with ip rule add nat

[root @easqg-gw# ip rule add nat 205.254.211.32 from 192. 168. 100. 32/ 29
[root @esqg-gw # ip rule show

0: fromall |ookup |ocal
32765: from 192. 168. 100. 32/ 29 | ookup main map-to 205.254. 211. 32
32766: fromall | ookup main

32767: fromall |ookup 253

Notice theip rule synonym for the nat option. It isvalid to substitute map- t o for nat .

135

IP Route Management

3.5.ip rule del

Naturaly, no iproute2 tool would be complete without the ability to undo what has been done. With ip
ruledel, individual rules can be removed from the RPDB.

Itisat first quite confusing that theword al | intheip rule show output needs to be replaced with the
network address 0/0. | do not know why al | is not acceptable as a synonym for 0/0, but you'll save
yourself some headache by getting in the habit of replacing al | with 0/0.

By replacing the verb add in any of the command lines above with the verb del , you can remove the
specified entry from the RPDB.

Example D.33. Removing a NAT rulefor an entire network with ip rule del nat

[root @masqg-gw # ip rule del nat 205.254.211.32 from 192. 168. 100. 32/ 29

[root @easqg-gw # ip rule show
0: fromall |ookup |ocal
32766: fromall |ookup main
32767: fromall |ookup 253

Theip rule utility can be agreat boon in the manipulation and maintenance of complex routers.

136

Appendix E. Tunnels and VPNs

FIXME

1. Lightweight encrypted tunnel with CIPE

FIXME; Crypto IP Encapsulation. Lightweight, because the carrier protocol is UDP. Visit the main
CIPE page [http://sites.inka.de/sites/bigred/devel/cipe.html].

2. GRE tunnels with ip tunnel

FIXME; Good way to get a static |P!

3. All manner of tunnels with ssh

FIXME; abuses of ssh.....ssh -0 GatewayPorts=yes and PPP/SSH.

4. IPSec implementation via FreeS/WAN

FIXME; (get links from Matt)

5. IPSec implementation in the kernel

FIXME; the development kernel 2.5.46+ contains support for 1PSec natively. This has been documented
at LARTC by bert hubert [http://lartc.org/howto/lartc.ipsec.html]. It won't be here for quite some time.

6. PPTP

FIXME; ugh...you don't really want to do PPTP (I don't think), but, if you do PoPToP [http://
www.poptop.org/] is the software for you.

137

http://sites.inka.de/sites/bigred/devel/cipe.html
http://sites.inka.de/sites/bigred/devel/cipe.html
http://sites.inka.de/sites/bigred/devel/cipe.html
http://lartc.org/howto/lartc.ipsec.html
http://lartc.org/howto/lartc.ipsec.html
http://www.poptop.org/
http://www.poptop.org/
http://www.poptop.org/

Appendix F. Sockets; Servers and
Clients

1. tel

2.NncC

Thereislittle point to the huge study of routing and network configuration if we can't move data from
one host to another. This appendix will cover many of the command line tools (and a few daemons)
which can be used to initiate TCP connections, receive TCP connections and send and receive UDP
datagrams. Many of these tools are included with stock installations.

telnet and nc are the most common tools used for quickly creating a TCP connection. The less common
utility tcpclient provides a scriptable method for initiating TCP sessions, equally aswell as nc. Finaly,

the tool socat includes support for alarge number of other types of sockets and filesin addition to TCP

and UDP.

Some services expect to run under another utility which will handle the socket operations. We'll tour the
following utilities: xinetd, tcpserver and the very specifically designed port redirection utility redir.

It'simportant to remember that tools like socat and nc are suited equally well to initiate or receive TCP
connections, but may not have the flexibility of administrative control afforded by tools such as xinetd
and tcpser ver where this was inherent to the design of the software.

net

Quick example of nc (pronounced net-cat) in action.

ExampleF.1. Smpleuse of nc

[root @ristan]# nc 192. 168.100. 17 25
220 i sol de ESMIP

qui t

221 isol de

nc isone of alarge number of tools for making a simple TCP connection.
Example F.2. Specifying timeout with nc

[root@ristan]# nc -w 5 192. 168. 98. 82 22

Example F.3. Specifying sour ce address with nc

[root @masqg-gw] # nc -s 192. 168. 99. 254 192. 168.47.3 25

138

Sockets; Servers and Clients

Example F.4. Using nc as a server

[root@ristan]# nc -1 -p 2048

Example F.5. Delaying a stream with nc

[root@ristan]# nc -1 -p 2048

Example F.6. Using nc with UDP

[root@ristan]# nc -u 192.168. 100.17 3000

3. socat

Example F.7. Smple use of socat

Example F.8. Using socat with proxy connect

Example F.9. Using socat perform SSL

Example F.10. Connecting one end of socat to a file descriptor

139

Sockets; Servers and Clients

Example F.11. Connecting socat to a serial line

Example F.12. Usinga PTY with socat

Example F.13. Executing a command with socat

Example F.14. Connecting one socat to another one

4. tcpclient

Example F.15. Simple use of tcpclient

Example F.16. Specifying the local port which tcpclient should request

Example F.17. Specifying the local | P to which tcpclient should bind

5. xinetd

Example F.18. | P redirection with xinetd

140

Sockets; Servers and Clients

Example F.19. Publishing a service with xinetd

6. tcpserver

Example F.20. Simple use of tcpserver

Example F.21. Specifying a CDB for tcpserver

Example F.22. Limiting the number of concurrently accept TCP sessions under
tcpserver

Example F.23. Specifying a UID for tcpserver's spawned processes
7. redir
Example F.24. Redirectinga TCP port with redir

Here we are going to talk about port redirection, so point out Section 5, “ Destination NAT with netfilter
(DNAT)” and Section 6, “Port Address Trandation (PAT) from Userspace’”.

Example F.25. Running redir in transparent mode

Example F.26. Running redir from another TCP server

141

Sockets; Servers and Clients

Example F.27. Specifying a sour ce addressfor redir'sclient side

142

Appendix G. Diagnostic Tools

Now that we have covered most of the basic tools for management of routes, | P addresses, and afew
Ethernet tools, we come to a set of tools which are used primarily to help you figure out what iswrong
in your network, where aroute is broken, or even, simply, whether ahost is reachable.

Some of these tools are available on other platforms, but may have different command line switches or
may use different packet signatures than those described here. The concepts in many cases, transfer, but,
of course, the command line options may be different.

We are going to start with one of the first networking tools that many people learn, ping and we'll move
along to the common tracer oute, which maps out a route from one host to another, mtr, which repre-
sents traceroute-type information in aricher format, netstat, for examining sockets (and routes) in use,
and finally, the indispensable tcpdump, which reports on all traffic passing through a device.

By learning both how and when to use these tools, but even more importantly, how to read their output,
you can perform atremendous amount of reconnaisance on your own network and frequently quickly
isolate problems and identify error conditions. These tools are some of the core tools of any linux ad-
ministrator who is responsible for an I P network.

1. ping

ping is one of the oldest IP utilities around. Simply put, ping asks another host if it isalive, and records
the round-trip time between the request and the reply.

In this section, we'll ook at several examples of the use of ping to test reachability, send a specified
number of packets, suppress all but summary output, stress the network, record the route a packet takes,
set the TTL, specify ToS, and specify the source I P.

The ping utility has a simple and elegant design. When run, it will craft a packet bound for the specified
destination, send the packet, and record the time it took that packet to reach its destination. The gener-
ated packet is an ICMP packet known as an echo-request. If the destination host receives the packet, it
should generate an echo-reply. The success or failure of this very simple operation can provide somein-
sight into the state of a network or a series of networks.

In most cases, the ICMP echo-request packets and echo-reply packets, upon which ping's functionality
relies, are allowed through routers and firewalls, however with the advent of trojans and distributed de-
nial of service tools which transmit information within ICMP packets, some networks and network ad-
ministrators block ICMP at their borders. For an example of such atrojan, see this dissection of the tri-
noo [http://staff .washington.edu/dittrich/misc/tfn.analysis] distributed denial of servicetool. Asaresult
of these nefarious uses of echo-request and echo-reply packets, some cautious network administrators
block all non-essential ICMP at their border routers. See Section 10, “ICMP and Routing” for amore
complete discussion of ICMP.

Thus, we can no longer assume (as perhaps we once could) that simply because a host is not answering
our ping request, this host is down. There may be a device which has been configured to filter out this
traffic.

If ahost is reachable and answering our echo-requests, then we may also wish to believe that the round-
trip times recorded by ping are an accurate representation of network conditions. This can be mislead-
ing. Some routers are configured to give ICMP diagnostic messages the lowest priority of any |P packets
travelling through them, in which case that router may contribute significantly to the round trip time of
any echo-request packet passing through it.

143

http://staff.washington.edu/dittrich/misc/tfn.analysis
http://staff.washington.edu/dittrich/misc/tfn.analysis
http://staff.washington.edu/dittrich/misc/tfn.analysis

Diagnostic Tools

With knowledge of these two potential roadblocks to the successful use of ping as a network diagnostic
tool, we can begin to explore how ping is useful. In most internal networks, and many public networks,
there are no filters to block our echo-request packets.

1.1. Using ping to test reachability

Initssimplest form, ping is used interactively on the command line to test reachability of aremote host.
Again, you'll seein all of the examples below the use of the - n switch to suppress DNS lookups. Since
the proper functioning of DNS relies on a properly configured network, and ping is one of your tools for
diagnosing network problems, it makes sense to suppress all name lookup until you have verified that
the IP layer is functioning properly.

Let's seefirst if the host nor gan can reach its default gateway. This example is similar to the test we
performed in Example 1.2, “ Testing reachability of alocally connected host with ping” fromtri st an.

On many systems, ping can be used by non-root users, but there are some options and features to ping
which require the user to have administrative privilege or root-level access to the box. Therefore, all ex-
amples below will be run as the root user. Please be aware, that many diagnostics can be run without this
high alevel of privilege.

Example G.1. Using ping to test reachability

[root @organ] # ping -n 192. 168. 98. 254

PI NG 192. 168. 98. 254 (192. 168. 98. 254) from 192. 168. 98.82 : 56(84) bytes of data.
64 bytes from 192. 168. 98. 254: icnp_seq=0 ttl =255 ti ne=231 usec

64 bytes from 192. 168. 98. 254: icnp_seq=1 ttl =255 tine=179 usec

64 bytes from 192. 168. 98. 254: icnp_seq=2 ttl =255 ti ne=215 usec

<ctrl-C

--- 192.168.98. 254 ping statistics ---
3 packets transnitted, 3 packets received, 0% packet |oss
round-trip mn/avg/ max/ ndev = 0.179/0. 208/ 0. 231/ 0. 024 ns

We have verified from nor gan that its default gateway, br anch- r out er isreachable. Thefirst line
of output tells us what the source and destination addresses (and names, if using DNS) are. Additionaly,
we learn the size of the data segment of the ping packet, 56 bytes, and the size of the entire outbound 1P
packet 84 bytes.

Each subsequent line of output before the summary is arecord of the receipt of areply from the destina-
tion (and what | P address sent the reply). Because ping needs to keep track of the number of bytesit has
sent, and the round-trip time, each time you run ping, it creates a sequence number inside the data of the
ping packet and reports the sequence number on any packets which return. By analyzing the timestamps
on the returned packets, ping can determine the round trip time of the journey and reports this as the fi-
nal field in each line of output.

At the end of the run, ping summarizes the number of replies, and performs some calculations on the
round-trip times. As with much data collection, you need alarge sample set of data to draw conclusions
about your network. Y ou can usually conclude that something is quite wrong if you cannot reach are-
mote host, but you should be cautious when concluding that your Ethernet card is bad simply because
round-trip times to a destination on the LAN is high. It is more likely that there's another problem. Col-
lecting ping data from a number of hosts to a number of destinations can help you determine if the prob-
lemisalocalized to asingle machine.

144

Diagnostic Tools

Frequently, you'll want to use ping in a script, or you'll want to specify that ping should only run for a
few cycles. Fortunately, thisistrivial (and I'll use the count option many times further below in this sec-
tion). The - ¢ restricts the number of packets which ping will send (or receive). It can be combined with
some of the other options for avariety of diagnostic purposes.

Example G.2. Using ping to specify number of packetsto send

[root @organ]# ping -c¢ 10 -n 192. 168. 100. 17

PI NG 192. 168. 100. 17 (192. 168. 100.17) from 192. 168.98.82 : 56(84) bytes of data.
64 bytes from 192. 168. 100. 17: icnp_seq=0 ttl =251 ti ne=39. 568 nsec
64 bytes from 192. 168. 100. 17: icnp_seqg=1 ttl =251 ti ne=38.529 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=2 ttl =251 ti ne=38.214 nsec
64 bytes from 192. 168. 100. 17: icnp_seqg=3 ttl =251 ti ne=38. 173 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=4 ttl =251 ti ne=38. 652 nsec
64 bytes from 192. 168. 100. 17: icnp_seqg=5 ttl =251 ti ne=38.278 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=6 ttl =251 ti ne=38.472 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=7 ttl =251 ti ne=38. 481 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=8 ttl =251 ti ne=38. 248 nsec
64 bytes from 192. 168. 100. 17: icnp_seq=9 ttl =251 ti ne=38. 188 nsec

--- 192.168.100. 17 ping statistics ---
10 packets transmitted, 10 packets received, 0% packet | oss
round-trip min/avg/ max/ ndev = 38. 173/ 38. 480/ 39. 568/ 0. 423 ns

In this example, we see avery regular 38 millisecond round trip time between nor gan (192.168.98.82)
andi sol de (192.168.100.17). After sending 10 echo request packets and receiving the replies, ping
summarizes the data for us and exits.

Occasionally, either in a script, or on the command line, you may not care about the output of each indi-
vidual line. In this case, you can suppress everything except the summary data with the - g switch. In the
following example, we are again testing reachability of i sol de (192.168.100.17) though we only care
about the summary output.

Example G.3. Using ping to specify number of packetsto send

[root @organ]# ping -q -¢ 10 -n 192. 168. 100. 17
PI NG 192. 168. 100. 17 (192. 168. 100.17) from 192. 168.98.82 : 56(84) bytes of data.

--- 192.168. 100.17 ping statistics ---
10 packets transmtted, 10 packets received, 0% packet | oss
round-trip min/avg/ max/ ndev = 37.853/38. 370/ 39. 320/ 0. 430 ns

Here, we see only the output from ping as it begins to send packets to the destination, and the summary
output when it has completed its run.

These are some simple examples of the use of ping to gather and present statistics on reachability of
destination hosts, packet loss, and round trip times. Some other diagnostics information can be gathered
with ping, too. Let'slook at the use of ping to test reachability as aggressively as possible.

145

Diagnostic Tools

1.2. Using ping to stress a network

Occasionaly, you'll want to stress the network to test how many packets you can squeeze through alink,
and how gracefully performance on that link degrades. Fortunately, ping, when run with the - f switch
can perform exactly thiskind of test for you.

Example G.4. Using ping to stress a networ k

[root @organ]# ping -c 400 -f -n 192.168. 99. 254

PI NG 192. 168. 99. 254 (192. 168. 99. 254) from 192. 168. 98.82 : 56(84) bytes of data.
--- 192.168.99. 254 ping statistics ---

411 packets transmitted, 400 packets received, 2% packet | oss

round-trip mn/avg/ max/ ndev = 37.840/62. 234/ 97. 807/ 12. 946 s

In this example, we have used the default packet size and sent 411 packets, receiving only 400 back
from the remote host for a mere 2% packet loss. By increasing the packet size of the packet we are send-
ing across the link we can get a sense for how quickly performance degrades on thislink. If we use a
much larger packet size (still smaller than Ethernet's 1500 byte frame), we see even more packet loss.
WEe'll specify a packet size of 512 bytes with the - s option.

Example G.5. Using ping to stress a networ k with lar ge packets

[root @organ]# ping -s 512 -c 400 -f -n 192.168. 99. 254
PI NG 192. 168. 99. 254 (192. 168. 99. 254) from 192. 168. 98.82 : 512(540) bytes of dat a.

--- 192.168.99. 254 ping statistics ---
551 packets transmitted, 400 packets received, 27% packet | oss
round-trip mn/avg/ max/ mdev = 47.854/295. 711/ 649. 595/ 153. 345 ns

Flooding alow bandwidth link, like the ISDN link between mor gan and masq- gw can be detrimental
to other traffic on that link, so it iswiseto usethe - f with restraint. Although ping isaversatile tool for
network diagnostics, it is not intended as a network performance measurement tool. For this sort of task,
try netperf [http://www.netperf.org/] or collect some data with SNMP to analyze with MRTG [http:/
peopl e.ee.ethz.ch/~oetiker/webtoolsmrtg/].

Asyou can see, the use of ping floods is a good way to stress the network to which you are connected,
and can be agood diagnostic tool. Be careful to stress the network for short periods of time if possible,
or inacarefully controlled setting. Unless you want to alienate coworkers and anger your network ad-
ministrator, you shouldn't start a ping flood and go home for the night.

1.3. Recording a network route with ping

The options we have outlined above are common options to ping, but now, let's look at some of the less
common options. Occasionally, you may find yourself on alinux box without tracer oute or mtr. Per-
haps it's an embedded linux host, or a minimal installation with ping. There is an almost unknown op-
tion for recording the route a packet takes. By comparison to the more sophisticated tools for tracing net-
work paths, ping with the record route option (- R) doesn't convey the information in as visually an ap-
pealing way, but it can get the job done.

146

http://www.netperf.org/
http://www.netperf.org/
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

Diagnostic Tools

Example G.6. Recording a network route with ping

[root @organ]# ping -c 2 -n -R 192. 168. 99. 35
PI NG 192. 168. 99. 35 (192. 168.99.35) from 192. 168.98.82 : 56(124) bytes of data.
64 bytes from 192. 168.99. 35: icnp_seq=0 ttl =253 tinme=56.311 nsec
RR: 192. 168. 98. 82

192. 168. 98. 254

192.168.99. 1

192. 168. 99. 35

192. 168. 99. 35

192.168.99. 1

192. 168. 98. 254

192. 168. 98. 82

64 bytes from 192. 168.99. 35: icnp_seq=1 ttl =253 tinme=47.893 nsec (sanme route)

--- 192.168.99.35 ping statistics ---
2 packets transnmitted, 2 packets received, 0% packet | oss
round-trip mn/avg/ max/ ndev = 47.893/52. 102/ 56. 311/ 4. 209 ns

As always, ping summarizes the output after it has completed its run, but let's examine the new section.
By using the record route option, we are asking all routers along the way to include their IPsin the head-
er. Although some routers may not observe this courtesy, many do. Unfortunately, thereis only room

to record 8 different hops (FIXME--verify thisl), so the use of ping - Ris mostly useful only in smaller
networks.

Thefirst IPwe hit is our own |P on the way out our Ethernet interface, 192.168.98.82. Thenitisapalin-
dromic journey through the network stacks of each of the following hostsin order: br anch-r out er,
i sdn-router,tristan, andback againin reverse order.

ping is even nice enough to report to us that a subsequent journey took the same route as the first packet.
If you have astatically routed internal network, any subsequent packets should look exactly like the sec-
ond packet. If dynamic routing isin use on your internal network, you may find that the routes change
occasionaly.

1.4. Setting the TTL on a ping packet

Now, frankly, I'm not sure of apractical use for the following option to ping, however, you can speci-
fy the TTL for an outbound echo requust packet. By setting the TTL you are specifying the maximum
number of hops this packet will travel beforeit will be dropped. Conventionally, the TTL is set by the
kernel to areasonable number of hops (like 64). The-t provides us the capability to forcethe TTL for
our echo requests. Now that we know it takes four hopsto gettot ri st an from nor gan we should be
able to test whether setting the TTL makes any difference.

Example G.7. Setting the TTL on a ping packet

[root @organ]# ping -¢c 1 -n -t 4 192.168. 99. 35

tcpdunp: |istening on ethO

02: 02: 04. 679152 192. 168.98.82 > 192. 168.99. 35: icnmp: echo request (DF)
02: 02: 04. 711474 192.168.99.35 > 192.168.98.82: icnp: echo reply

[root @organ]# ping -¢c 1 -n -t 3 192. 168. 99. 35

147

Diagnostic Tools

tcpdunp: |istening on ethO
02: 01: 50. 810567 192. 168.98.82 > 192.168.99. 35: icnmp: echo request (DF)
02: 01: 50. 841917 192. 168.99.1 > 192.168.98.82: icnp: tine exceeded in-transit

Clearly, weareabletoreachtri st an if we set the TTL on our echo requeststo 4, but as soon aswe
drop the TTL to 3, we get areply from the third hop (i sdn- r out er), telling us that our packet was
too old to be forwarded to its destination. If you are unclear on therationale for TTL, I'd suggest review-
ing some of the general |P documentation availablein Section 1.3, “ General |P Networking Resources”.

1.5. Setting ToS for a diagnostic ping

Type of Service (ToS) isincreasingly in use on backbones across the Internet which has brought with it
Service Level Agreements (SLA). If you have an SLA with your provider, you may find the use of ping
- Qto set the IP packet ToS flags will help you to determineif your provider is holding up their end of
the bargain.

In Example G.8, “ Setting ToS for adiagnostic ping” we'll set the ToS flag and verify with tcpdump that
the ToS flag on the outbound packets have actually been set. Let's assume that we have an SLA with a
backbone provider for our link between our German office (195.73.22.45) and our North American of-
fice (205.254.209.73). WE'l send two test packets to the remote end, and observe the data on the wire.

Example G.8. Setting ToS for a diagnostic ping

[root @wan-gwj# ping -¢c 2 -Q 8 -n 195.73.22.45

PI NG 195. 73. 22. 45 (195.73. 22.45) from 205. 254. 209. 73 : 56(84) bytes of data.
64 bytes from 195. 73.22.45: icnp_seq=0 ttl =252 tine=51.633 nsec

64 bytes from 195. 73.22.45: icnp_seq=1 ttl =252 tine=36.323 nsec

--- 195.73.22.45 ping statistics ---

2 packets transmtted, 2 packets received, 0% packet |oss

round-trip mn/avg/ max/ ndev = 36.323/43.978/51. 633/ 7. 655 ns

[root @van-gw] # tcpdunp -nni wanO icnp

tcpdunp: |istening on wanO

21:55:37.983149 10.10.14.2 > 10.10. 22. 254: icnp: echo request (DF) [tos 0x8]
21:55:38.034770 10.10.22.254 > 10.10.14.2: icnp: echo reply [tos 0x8]
21:55:38.982277 10.10.14.2 > 10.10.22. 254: icnp: echo request (DF) [tos 0x8]
21:55:39. 018588 10.10.22.254 > 10.10.14.2: icnp: echo reply [tos 0x8]

Naturally, ping reports to us the round-trip times, the source and destination IPs, and that there was no
packet loss. And our tcpdump output shows that the ToS flags were properly set on the packet. With all
of thisinformation, we can collect data about the reliability of the network between our two offices.

1.6. Specifying a source address for ping

Occasionadly, you'll find yourself on a heavily packet filtered host, or a host which employs conditional
routing for packets with certain source addresses. Such packet filtering can prevent or conflict with the
use of ping. Fortunately, ping alows the user to specify the source address of an outbound packet, thus
allowing traversal of packet filters and conditional routing tables.

My classic example of aneed for specifying source address on aping isaVPN connected network.
Let's assume nasq- gw has a CIPEpeer in another city. Let's assume the internal 1P on the peer is

148

Diagnostic Tools

192.168.70.254. If masq- gw sends a packet to the peer with a source address of 205.254.211.179, the
peer might drop the inbound packet on a VPN interface from the public IP of the peer ! Inthiscase,
the peer should still accept traffic from masq- gwif the originating IP isinside the private network [P
range.

In the Example G.9, “ Specifying a source address for ping” we'll use ping to check reachability of the
inside interface of the CIPE peer of masq- gw.

Example G.9. Specifying a sour ce addressfor ping

[root @msqg-gw]# ping -c 2 -n -1 192.168.99. 254 192. 168. 70. 254

PI NG 192. 168. 70. 254 (192. 168. 70. 254) from 192. 168. 99. 254 : 56(84) bytes of
64 bytes from 192. 168. 70. 254: icnp_seq=0 ttl =254 tine=69.285 nmsec

64 bytes from 192. 168. 70. 254: icnp_seq=1 ttl =254 tine=53.976 nmsec

--- 192.168. 70. 254 ping statistics ---
2 packets transnitted, 2 packets received, 0% packet |oss
round-trip m n/avg/ max/ ndev = 53. 976/ 61. 630/ 69. 285/ 7. 658 ns

By forcing the echo request packet to use the IP bound to one of our internal interfaces as the source ad-
dresswith the- | we are able to send traffic through the CIPE tunnel to the other side, and back.

1.7. Summary on the use of ping

Asyou can see, ping isaversatile tool in the network administrator's toolkit, and can be used for awide
range of tests beyond the simple reachability test. For a brief and humourous introduction to the program
itself, see The Story of Ping [http://ftp.arl.mil/~mike/ping.html].

Now that we have a good idea of the uses of the ping utility, let's move on to some other tools which can
provide us other diagnostic data about our networks.

2. traceroute

tracerouteis autility for identifying the network path a packet will take to a destination. Like ping, it
can be called a number of ways. tracer oute takes advantage of athe TTL in an |P packet to determine
hop by hop the reachability and addressing of routers between the tracer oute host and the intended des-
tination.

Thetool tracerouteis available on most Unix-like platforms and even under Windows astracert. Here,
we will only consider the common tracer oute installed on linux systems.

2.1. Using traceroute

The default packet type created by traceroute is a UDP packet. The first packet will be addressed to
udp/33435 and each subsequent packet will be addressed to an incremented port number. This allows
tracer oute to keep track of which return ICMP packets correspond to which outbound packets.

L1 the admin controls both sides of the link, it is a matter of choice and preference whether traffic from the outside | P of the peer VPN endpoint
should be allowed. I'll argue that traffic from the peer endpoint should not be allowed, but thisis opinion only.

149

dat a.

http://ftp.arl.mil/~mike/ping.html
http://ftp.arl.mil/~mike/ping.html

Diagnostic Tools

Example G.10. Simple usage of traceroute

[root @sol de] # traceroute -n 192. 168. 99. 35
[root @sol de] # tcpdunp -nn -i ethO not tcp
ng on et hO

t cpdunp:

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

13

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.

listeni

905537
905668
906005
906112
906357
906457
906759
907061
907293
907543
907753
907990

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

packets received
0 packets dropped by kernel

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

100.
100.
100.
100.
100.
100.
100.
99. 35 > 192. 168. 100. 17.
100.
99. 35 > 192. 168. 100. 17.
100.
99. 35 > 192. 168. 100. 17.

17. 32978 > 192. 168
254 > 192. 168. 100.
17. 32978 > 192. 168
254 > 192. 168. 100.
17. 32978 > 192. 168
254 > 192. 168. 100.
17. 32978 > 192. 168

17. 32978 > 192. 168

17. 32978 > 192. 168

by filter

. 99. 35. 33435: udp

10 [ttl 1]

17. icnp: tinme exceeded in-transit |

. 99. 35. 33436: udp

10 [ttl 1]

17. icnp: tinme exceeded in-transit |

. 99. 35.33437: udp

10 [ttl 1]

17. icnp: tinme exceeded in-transit |

. 99. 35.33438: udp
. 99. 35.33439: udp

. 99. 35. 33440: udp

icnp: 192.168. 99.
icnp: 192.168. 99.

icnp: 192.168. 99.

10
35 udp port 33438
10
35 udp port 33439
10
35 udp port 33440

Notein Example G.10, “ Simple usage of traceroute” that tcpdump conveniently reportsthe low TTL

on the first packets. Packets transmitted from arouter with a TTL of 1 will expire at the next router they
hit. Thisis the concept and mechanism by which traceroute is able to detect the path by which packets
arrive at their destination.

Each of the first three packets transmitted in the above example receive ICMP time exceeded replies
from the upstream router (masq- gw). The second set of packets have their TTL set to 2, which is not
reported by tcpdump. This allows these packets to reach the intended destination, t ri st an.

Thereisaliability of using UDP traceroute on the Internet. Many screening routers, firewalls, and even
hosts will silently drop UDP packets, effectively destroying the usability of tracer oute. On internal net-
works, or networks known to have no firewalls, conventional tracer oute can continue to provide diag-
nostic value. In the case that the network is known to have afirewall, tr acer oute can use ICMP, and
mtr isagood example of a network diagnostic tool which uses ICMP only.

2.2. Telling traceroute to use ICMP echo request instead

of UDP

2.3. Setting ToS with traceroute

2.4. Summary on the use of traceroute

3. mtr

FIXME

150

Diagnostic Tools

4. netstat

The netstat utility summarizes avariety of characteristics of the networking stack. With netstat you can
learn anumber of important things. If no other type of dataiis requested it will report on the state of all
active sockets. Y ou can however request the routing table, masquerading table, network interface statis-
tics, and network stack statistics 2.

4.1. Displaying socket status with netstat

One of the most common uses of the netstat utility isto determine the state of sockets on a machine.
There are many questions that netstat can answer with the right set of options. Here'salist of some of
the things different things we can learn.

» which services are listening on which sockets

» what process (and controlling PID) is listening on a given socket
» whether dataiswaiting to be read on a socket

» what connections are currently established to which sockets

By invoking netstat without any options, you are asking for alist of all currently open connections to
and from the networking stack on the local machine. This means IP network connections, unix domain
sockets, IPX sockets and Appletalk sockets among others. Naturally, we'll skip over the non-1P sockets
since thisis about IP networking with linux.

Assumethe- - i net switchin all cases below unless we are examining a particular higher layer proto-
col (e.g., TCPwiththe- - t cp switch or UDP with - - udp switch.

A convenient feature of netstat isits ability to differentiate between two different sorts of name lookup.
Normally the - n specifies no name lookup, but this is ambiguous when there are hostnames, port
names, and user names. Fortunately, netstat offers the following options to differentiate the different
forms of lookup and suppress only the [un-]desired |ookup.

e --nuneric-hosts
e --numeric-ports
e --nuMeric-users

The option - n (my favorite), suppress al hostname, port name and username lookup, and is a synonym
for - - numer i c. I'll reiterate that hostnames and DNS in particular can be confusing, or worse, mis-
leading when trying to diagnose or debug a networking related issue, so it is wise to suppress hostname
lookups in these sorts of situations.

In Example G.11, “Displaying | P socket status with netstat” we will look at netstat's numeric output
and then we'll invoke the same command but suppress the host 1ookups. Though the output is almost the
same, aparticular situation might call for one or the other invocation.

Example G.11. Displaying I P socket status with netstat

2 Additional ly, netstat can display multicast information with the - - gr oup switch. | have zero experience here. Anybody with experience want
to write about this?

151

Diagnostic Tools

[root @organ] # netstat --inet -n
Active Internet connections (W o servers)

Proto Recv-Q Send-Q Local Address For ei gn Address State

tcp 0 192 192. 168. 98. 82: 22 192. 168. 99. 35: 40991 ESTABLI| SHED
tcp 0 0 192. 168. 98. 82: 42929 192. 168. 100. 17: 993 ESTABLI| SHED
tcp 6 0 127.0.0.1: 40863 127.0.0. 1: 6010 ESTABLI| SHED
tcp 0 0 127.0.0.1:6010 127.0.0. 1: 40863 ESTABLI| SHED
tcp 0 0 127.0.0. 1: 38502 127.0.0. 1: 6010 ESTABLI| SHED
tcp 0 0 127.0.0.1:6010 127.0. 0. 1: 38502 ESTABLI| SHED
tcp 0 0 192.168.98. 82: 53733 209. 10. 26. 51: 80 SYN_SENT
tcp 0 0 192. 168. 98. 82: 44468 192. 168. 100. 17: 993 ESTABLI| SHED
tcp 0 0 192. 168. 98. 82: 44320 192. 168. 100. 17: 139 TI VE_WAI T
[root @organ] # netstat --inet --nuneric-hosts

Active Internet connections (W o servers)

Prot o Recv-Q Send-Q Local Address For ei gn Address State

tcp 0 0 192.168.98. 82: ssh 192. 168. 99. 35: 40991 ESTABLI| SHED
tcp 0 0 192. 168. 98. 82: 42929 192. 168. 100. 17: i maps ESTABLI| SHED
tcp 0 0 127.0.0.1: 40863 127.0.0. : x11-ssh-of f set ESTABLI SHED
tcp 0 0 127.0.0.:x11-ssh-offset 127.0.0.1: 40863 ESTABLI| SHED
tcp 0 0 127.0.0. 1: 38502 127.0. 0. : x11-ssh-of f set ESTABLI SHED
tcp 0 0 127.0.0.:x11-ssh-offset 127.0.0.1: 38502 ESTABLI| SHED
tcp 0 0 192.168.98. 82: 53733 209. 10. 26.51: http SYN_SENT
tcp 0 0 192. 168. 98. 82: 44468 192. 168. 100. 17: i maps ESTABLI| SHED
tcp 0 0 192. 168. 98. 82: 44320 192. 168. 100: net bi os-ssn TIVEWAI T

Each line represents a either the sending or receiving half of a connection. In the above output on nor -
gan it appears that there are no connections other than TCP connections. If you are very familiar with
TCP ports and the service associated with that port, then the first format will suffice in most cases. A
possibly misleading aspect of the latter output is visible in the connections to and from localhost and the
final line. netstat abbreviates the IP endpoint in order to reproduce the entire string retrieved from the
port lookup (in/ et ¢/ ser vi ces). Also interestingly, this line conveysto us (in the first output) that
the kernel iswaiting for the remote endpoint to acknowledge the 192 bytes which are still in the Send-Q
buffer.

Thefirst line describes a TCP connection to the IP locally hosted on mor gan's Ethernet interface. The
connection was initiated from an ephemeral port (40991) ont ri st an to a service running on port 22.
The service normally running on this well-known port is sshd, so we can conclude that somebody on

t ri st an has connected to the nor gan's ssh server. The second line describes a TCP session open

to port 993 oni sol de, which probably means that the user on nor gan has an open connection to an
IMAP over SSL server.

The third through the sixth lines can be understood in pairs. By examining the source and destination
IP and port pairs, we can see that two different TCP sessions have been established with the source and
destination address of 127.0.0.1. For an administrator to publish services on localhost is not at all un-
common. This makes the service harder to abuse from the network. In this case, when we allow the ser-
vice lookup, the port in question (6010) appears to be used to tunnel forwarded X applications over ssh.

The next lineisthe first TCP session in our output which isnot in a state of ESTABLISHED. Refer to
Table G.1, “Possible Session States in netstat output” for afull list of the possible values of the State
field in the netstat output. The state SYN_SENT means that an application has made arequest for aTCP
session, but has not yet received the return SYN+ACK packet.

Thefinal line of our netstatoutput shows a connection inthe TIME_WAIT state, which means that the
TCP sessions have been terminated, but the kernel is waiting for any packets which may still be left on

152

Diagnostic Tools

the network for this session. It isnot at all abnormal for socketsto beina TIME_WAIT state for a short

period of time after a TCP session has ended.

If we needed to know exactly which application owned a particular network connection, we would use

the-p |

- - pr ogr amswitch which gives us the PID and process hame of the owner process. If we
want to see the unix user and the PID and processwe'll add the- e |

- - ext end switch.

Example G.12. Displaying | P socket status details with netstat

[root @asqg-gw # net st at
Prot o Recv-Q Send- Q Local

tcp 0
tcp 0

-p -e --inet
Addr ess

0 192. 168. 100. 254: ssh
240 192. 168. 99. 254: ssh

--numeri c-hosts

For ei gn Address

192. 168. 100. 17: 49796
192. 168. 99. 35: 42948

There doesn't appear to be alarge number of connections to and from the mas - gw host. The two
sessions areinitiated to the sshd running on port 22, and the process which owns each socket is aroot

process.

Table G.1. Possible Session Statesin netstat output

State Description

LISTEN accepting connections

ESTABLISHED connection up and passing data

SYN_SENT TCP; session has been requested by us; waiting for
reply from remote endpoint

SYN_RECV TCP; session has been requested by a remote end-
point for a socket on which we were listening

LAST _ACK TCP; our socket is closed; remote endpoint has al-
so shut down; we are waiting for afinal acknowl-
edgement

CLOSE WAIT TCP; remote endpoint has shut down; the kernel is
waiting for the application to close the socket

TIME _WAIT TCP,; socket iswaiting after closing for any pack-
ets left on the network

CLOSED socket is not being used (FIXME. What does
mean?)

CLOSING TCP; our socket is shut down; remote endpoint is
shut down; not al data has been sent

FIN_ WAIT1 TCP; our socket has closed; we arein the process
of tearing down the connection

FIN_WAIT2 TCP; the connection has been closed; our socket is

waiting for the remote endpoint to shut down

153

St at e
ESTABLI SHED r o
ESTABLI SHED r o

Diagnostic Tools

4.2. Displaying the main routing table with netstat
One of the most common uses of netstat, especially in cross-platform environments is the reporting of
the main routing table. On many platforms, netstat -rn is the preferred method of displaying routing in-
formation, although linux provides at |east two alternatives to this; route and ip route show.

Example G.13. Displaying the main routing table with netstat

[root @organ] # netstat -rn
Kernel IP routing table

Desti nati on Gat eway Gennmask Fl ags MSS Wndow irtt Iface
192. 168. 98. 0 0.0.0.0 255.255.255.0 U 40 O 0 ethoO
127.0.0.0 0.0.0.0 255.0.0.0 u 40 O 0lo
0.0.0.0 192. 168.98.254 0.0.0.0 uG 40 0O 0 ethoO

This output should look familiar. The routing cache itself may not be as familiar to most, but can also be
displayed with netstat. The ouput below is exactly the same as the ouput from route -enC. Refer also to
Example D.3, “Viewing the routing cache with route”.

Example G.14. Displaying therouting cache with netstat

[root@ristan]# netstat -rnC
Kernel IP routing cache

Sour ce Desti nation Gat eway Fl ags MSS Wndow irtt Iface
194.52.197.133 192.168.99.35 192. 168. 99. 35 I 40 0 Olo
192.168.99.35 194.52.197.133 192.168.99. 254 1500 0O 29 ethoO
192.168.99.35 192.168.99. 254 192. 168. 99. 254 1500 0O 0 ethO
192. 168.99. 254 192.168.99.35 192. 168. 99. 35 il 40 0 Olo
192.168.99.35 192.168.99.35 192. 168. 99. 35 I 16436 0 Olo
192.168.99.35 194.52.197.133 192.168.99. 254 1500 0O 0 ethO
192.168.99.35 192.168.99. 254 192. 168. 99. 254 1500 0O 0 ethO

Consult Section 1.1, “Displaying the routing table with route” for more detail on reading and interpret-
ing the datain this output. Because this is simply another way of reporting the routing table information,
welll skip over any detailed description.

4.3. Displaying network interface statistics with netstat
command

netstat -i summarizes interface statistics in aterse format. This format

OK! Thisis strange. netstat -ie looks exactly like ifconfig output. That's weird!

154

Diagnostic Tools

4.4. Displaying network stack statistics with netstat

4.5. Displaying the masquerading table with netstat

For machines which perform masquerading, typically dual-homed packet-filtering firewalls like masqg-
gwatool to list the current state of the masquerading table is convenient.

Each masqueraded connection can be described by atuple of six pieces of data: the source I P and source
port, the destination | P and destination port, and the (usually implicit) locally hosted IP and alocal port.

Example G.15. Displaying the masquer ading table with netstat

[root @measqg-gw # netstat -M

FIXME; this command seems to fail on all of the iptables boxen, evenif I'musingthe-j MASQUER-
ADE target. | can useit successfully on ipchains boxen. Anybody have any ideas or explanation here?

5. tcpdump

The tcpdump utility isanot as friendly as some other network diagnostic tools. Some of the output is

Thisisagood time to mention that tcpdump can capture and store packet flows for consumption at a lat-
er date. Frequently, you may find yourself without a top-notch packet analysis utility such as ethereal
[http://www.ethereal .com/]. Fortunately, you can create tcpdump data files and view them with atool
such as ethereal. Even if astream analysistool is not available, the documentation for ethereal [http://
www.ethereal.com/docs/user-guide/] is tremendously helpful in packet analysis.

5.1. Using tcpdump to view ARP messages

Example G.16. Viewing an ARP broadcast request and reply with tcpdump

[root @rasq- gw] #

155

http://www.ethereal.com/
http://www.ethereal.com/
http://www.ethereal.com/docs/user-guide/
http://www.ethereal.com/docs/user-guide/
http://www.ethereal.com/docs/user-guide/

Diagnostic Tools

Example G.17. Viewing a gratuitous ARP packet with tcpdump

[root @rasq- gw] #

Example G.18. Viewing unicast ARP packets with tcpdump

[root @asq- gw] #

5.2. Using tcpdump to see ICMP unreachable messages

Example G.19. tcpdump reporting port unreachable

[root @mesq- gw] #

Example G.20. tcpdump reporting host unreachable

[root @msq- gw] #

Example G.21. tcpdump reporting net unreachable

[root @rasq- gw] #

156

Diagnostic Tools

5.3. Using tcpdump to watch TCP sessions

Example G.22. Monitoring TCP window sizeswith tcpdump

[root @rasq- gw] #

Example G.23. Examining TCP flags with tcpdump

[root @masq- gw] #

Example G.24. Examining TCP acknowledgement numberswith tcpdump

[root @masq- gw] #

5.4. Reading and writing tcpdump data

Example G.25. Writing tcpdump datato afile

[root @masq- gw] #

Example G.26. Reading tcpdump data from afile

[root @rasq- gw #

157

Diagnostic Tools

Example G.27. Causing tcpdump to use a line buffer

[root @msq- gw] #

5.5. Understanding fragmentation as reported by tcp-
dump

Example G.28. Under standing fragmentation asreported by tcpdump

[root @rasq- gw] #

5.6. Other options to the tcpdump command

Example G.29. Specifying interface with tcpdump

[root @rasq- gw] #

Example G.30. Timestamp related optionsto tcpdump

[root @mesq- gw] #

6. tcpflow

FIXME

7. tcpreplay

FIXME

158

Appendix H. Miscellany

This appendix is a collection of odds and ends which didn't fit anyplace else. So, consider it a grab-bag
of toys, tips, and remarks. Here, you'll find a brief look at some I P calculators and some general remarks
about iproute? tools.

1. ipcalc and other IP addressing calculators

There are anumber of different utilities called ipcalc, amost al of which perform the same basic task.
These are handy calculators for converting from CIDR to traditional |P notation and determining net-
work and broadcast addresses.

A short perl script [http://packages.debian.org/unstable/net/ipcal c.html], this prints out alll the infor-
mation you would want to know about an | P address. It defaults to print colorized output, and comes
with its own CGI (shown running here [http://jodies.def/ipcalc]).

* For those who perform all operations and research through a web browser, a DHTML calculator
[http://www.hesketh.com/~schampeo/projects/ipcal ¢/] should do the trick.

» And here's another IP calculator [http://www.tel usplanet.net/public/sparkman/netcal c.htm].

* You can run thisipcalc [http://www.gjw.com/ipcal c.htm], which features hexadecimal aswell as deci-
mal output, on your PDA.

» RedHat has created their own ipcalc utility which prints out a shell variable assignment command in-
stead of simply the requested piece of information. In the startup scripts, RedHat evalsthis variable
assignement into existence. Despite this shortcoming, it is auseful tool and is documented in its man-
page (part of the initscripts RPM).

Doubtless, there are alarge number of other IP calculators available to ease the job of the network ad-
ministrator. The above tools are meant as a brief summary of some of the offerings.

2. Some general remarks about iproute2 tools

Thisisameant to be a collected set of thoughts which don't fit anyplace else about the iproute2 tools. If
you are reading thisin search of more details about the iproute2 tools, you should run (not walk) to your
nearest command line, and execute the following command: bash -c¢ ' gv $(| ocate ip-
cref.ps) '.

In any case, | suggest that the reader consult the documentation which comes with the iproute2 package
for canonical answers.

» Theiproute? suite exposes all of the networking functionality of the linux kernel where the venerable
tools (ifconfig, route) are hamstrung by history.

» Each of the iproute2 object names can be shortened to the shortest unique set of characters. This
means that ip route show can be abbreviated ip ro sand ip rule show can be abbreviated ip ru s. Al-
so ip address show can be ip a s. Such convenient shortcuts on the command line are often confusing
in documentation. For thisreason, | have preferred examples featuring the complete object names and
action verbs. Note also below that iproute2 accepts not only abbreviations but aso synonyms as de-
scribed in Table H.1, “iproute2 Synonyms”.

» There are some syntactic synonyms available within the ipr oute2 package. See this Table H.1,
“iproute2 Synonyms’ for acomplete list of synonyms.

159

http://packages.debian.org/unstable/net/ipcalc.html
http://packages.debian.org/unstable/net/ipcalc.html
http://jodies.de/ipcalc
http://jodies.de/ipcalc
http://www.hesketh.com/~schampeo/projects/ipcalc/
http://www.hesketh.com/~schampeo/projects/ipcalc/
http://www.telusplanet.net/public/sparkman/netcalc.htm
http://www.telusplanet.net/public/sparkman/netcalc.htm
http://www.ajw.com/ipcalc.htm
http://www.ajw.com/ipcalc.htm

Miscellany

» Because theiproute2 command suite is under development, there may be dlight differences between
the output described in this documentation and that of your release of iproute2. | have tried to focus
on the overwhelmingly common uses of the iproute2 tools rather than the ones which are under ac-
tive development, and are subject to syntactic changes or new output presentations.

» There are extensions to the iproute2 command suite, which can ater the sets of objects or syntax
available for manipulation and inspection. Where these are covered in detail in this documentation,
they will be relegated to a non-canonical ghetto. Examples will (someday) includeip arp [http:/
Www.ssi.bg/~jal#iparp] and tc extensions.

There are some common synonyms in iproute2 syntax. Outlined below in Table H.1, “iproute2
Synonyms” isalist of the common synonyms. Note, that these synonyms are available in addition to the
abbreviations indicated above.

TableH.1. iproute2 Synonyms

Command Variant Synonyms
ip neighbor ip neighbour
ip tunnel ip tunl
ip OBJECT show ip OBJECT ls, ip OBJECT list
ip OBJECT change ip OBJECT chg, ip OBJECT replace

Because the iproute2 suite of tools is so tightly integrated with linux, it is not available for other op-
erating systems. Thisis at once its strength and weakness. For users contemplating linux for the first
time, ifconfig, netstat, and route are familiar and they feel intuitive. More experienced users and con-
trol freaks will find the iproute2 tools attractive and perhaps indispensable.

3. Brief introduction to sysctl

Many behaviours of the linux kernel can be modified through the use of run time variables. These vari-
ables can be changed manually or with the use of a convenient command line utility. Most linux distrib-
utions also include a standard configuration file which can store these parameters for use at boot time.

For a deeper reference into the matter and use of sysctl seethe IP Sysctl tutoria [http:/ip-
sysctl-tutorial .frozentux.net/], maintained by Oskar Andreasson.

160

http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#iparp
http://www.ssi.bg/~ja/#iparp
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/

Appendix I. Links to other Resources

1. Links to Documentation

This chapter contains some categorized links to various further reading and reference materials on many
topicsin the linux and networking arenas. Also supplied are a number of linksto software as well.

1.1. Linux Networking Introduction and Overview Materi-
al

e Thebest first place to go (if you can't find any help on this page) isto visit the comprehensive
TLDP archive of networking-related documentation [http://www.tldp.org/HOWTO/HOWTO-IN-
DEX/networking.html]. Here you will find a breakdown of the available documentation, organized in
asensible way.

» The Linux Network Administrator's Guide [http://www.tldp.org/L DP/nag2/index.html] covers some
of the same material as this guide. It additionally covers UUCP, SLIP, PPP, NIS, NFS, IPX, email ad-
ministration, and NNTP. It is an excellent general reference.

» The Networking HOWTO [http://www.tldp.org/HOWTO/Net-HOWTO/index.html] provides a good
overview of most of the networking protocols and link layer devices supported under linux, though it
covers primarily the 2.0 and 2.2 kernels.

» Here's one step-by-step tutorial [http://eressea.pikus.net/~pikus/plug_firewall/page0.html] (among

many) which shows how to configure alinux machine as arouter/firewall. A brief summary rather
than athorough explanation, it instructs well by example.

1.2. Linux Security and Network Security

Linux has been adopted widely as a platform on which to build network security devices as aresult of its
feature set. Here, you'll find links to network security documentation.

» The Security HOWTO [http://tldp.org/HOWTO/Security-HOWTO/] introduces many of the topics
that touch on securing alinux machine, including many network security topics.

» The Security Quickstart HOWTO [http://tldp.org/HOWTO/Security-Quickstart-HOWTO/] isfor the
impatient.

* FIXME

* FIXME

1.3. General IP Networking Resources

There are a number of resources available to cover alarge range of 1P networking topics. | have select-
ed afew here, but there are many other sources of this information both dead-tree versions and Internet
documentation.

» One of the key reference materials for any |P networking shop is the seminal work by the late W.
Richard Stevens [http://www.kohala.com/start/]. Three volumes catal og the architecture of I P net-
working and higher layer protocoals.

161

http://www.tldp.org/HOWTO/HOWTO-INDEX/networking.html
http://www.tldp.org/HOWTO/HOWTO-INDEX/networking.html
http://www.tldp.org/HOWTO/HOWTO-INDEX/networking.html
http://www.tldp.org/LDP/nag2/index.html
http://www.tldp.org/LDP/nag2/index.html
http://www.tldp.org/HOWTO/Net-HOWTO/index.html
http://www.tldp.org/HOWTO/Net-HOWTO/index.html
http://eressea.pikus.net/~pikus/plug_firewall/page0.html
http://eressea.pikus.net/~pikus/plug_firewall/page0.html
http://tldp.org/HOWTO/Security-HOWTO/
http://tldp.org/HOWTO/Security-HOWTO/
http://tldp.org/HOWTO/Security-Quickstart-HOWTO/
http://tldp.org/HOWTO/Security-Quickstart-HOWTO/
http://www.kohala.com/start/
http://www.kohala.com/start/
http://www.kohala.com/start/

Links to other Resources

e Hereisagood introduction to Classless Inter Domain Routing (CIDR) [http://www.ral phb.net/| PSub-
net/]. CIDR is atechnique employed since the mid 1990s to reduce the load on the routing devices
employed on the Internet. A beneficial side effect isthe simplicity of the CIDR addressing notation.
For a CIDR address reference, RFC 1878 [http://www.isi.edu/in-notes/rfc1878.txt] has proven invalu-
ableto me.

» Some general |P subnetting and other | nternetworking questions are answered at SubnetOnline [http://
www.subnetonline.com/]. At Cisco's site, you can find a good introduction to subnetting an | P space
[http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4d/nd20a.htm]. Another one-page tutorial in-
troduction to subnetting and CIDR networking is available here [http://www.j51.com/~sshay/tcpip/
ip/ip.htm]. And don't forget the IP subnetting mini-HOWTO [http://www.linuxpowered.com/HOW-
TO/mini/IP-Subnetworking.html] from TLDP.

» TheInternet Assigned Numbers Authority (IANA) [http://www.iana.org/] has selected a number of IP
networks which are intended for discretionary use in private networks. RFC 1918 [http://www.isi.edu/
in-notes/rfc1918.txt] outlines the address ranges which are available for private use. Additionally,
IANA has posted a summary [http://www.iana.org/assignments/ipv4-address-space] of the identity
of the subdelegates of each of the class A sized network address ranges. See also the update to RFC
1918 in RFC 3330 [http://www.isi.edu/in-notes/rfc3330.txt]

» Address Resolution Protocol is used to provide the glue between Ethernet link layer information
(hardware addresses) and the IP layer. This page [http://www.erg.abdn.ac.uk/users/gorry/course/in-
et-pages/arp.html] isinstructivein ARP.

e Asdiscussed in Section 10.1, “MTU, MSS, and ICMP’, MSS and MTU are key matters for |P
communication. Path MTU discovery, as discussed in RFC 1911 [http://www.isi.edu/in-notes/
rfc1911.txt], is used as a way to make most efficient use of network resources by detecting the small-
est link layer between two endpoints and setting the MTU accordingly. This breaks when ICMPis
assiduously filtered. Visit this discussion [http://blue-labs.org/howto/mtu-mss.php] or this page on
MTU and MSS [http://alive.znep.com/~marcs/mtu/], and of course LARTC's discussion and solution
[http://lartc.org/howto/l artc.cookbook.mtu-discovery.html]. For more on the general issue of ICMP
and what is required see also this SANS discussion [http://rr.sans.org/audit/more_ICMP.php]. At a
Usenix conference in late 2002, the issue of MTU and M SS [http://www.usenix.org/events/lisa02/
tech/vanderberg.html] prompted the M SS Initiative [http://home.earthlink.net/~jaymzh666/mss/
index.html]. Because thisis awidely misunderstood issue, there is even aworkaround in the RFCs,
RFC 2923 [http://www.isi.edu/in-notes/rfc2923.txt].

1.4. Masquerading topics

» The Linux Documentation Project keeps a clear and up to date reference on IP masquerading [http://
www.tldp.org/HOWTO/IP-Masquerade-HOWTO/] which thoroughly covers the issuesinvolved with
masquerading.

1.5. Network Address Translation

* If you have a 2.4 kernel and are using iptables, you should read Rusty Russell's documentation on
NAT [http://www.netfilter.org/unreliable-guidesNAT-HOWTO/NAT-HOWTO.linuxdoc.html] with
netfilter.

» The command reference for the iproute? tools provides sparse documentation of the NAT features,
but has an appendix [http://linux-ip.net/gl/ip-cref/nodel57.html] which covers the key questions with
regard to iproute2 NAT.

» SuSe has Michael Hasenstein's paper [http://www.suse.de/~mhallinux-ip-nat/diplom/nat.html] on
NAT, which is an excellent technical overview of the case for NAT.

162

http://www.ralphb.net/IPSubnet/
http://www.ralphb.net/IPSubnet/
http://www.ralphb.net/IPSubnet/
http://www.isi.edu/in-notes/rfc1878.txt
http://www.isi.edu/in-notes/rfc1878.txt
http://www.subnetonline.com/
http://www.subnetonline.com/
http://www.subnetonline.com/
http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd20a.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/idg4/nd20a.htm
http://www.j51.com/~sshay/tcpip/ip/ip.htm
http://www.j51.com/~sshay/tcpip/ip/ip.htm
http://www.j51.com/~sshay/tcpip/ip/ip.htm
http://www.linuxpowered.com/HOWTO/mini/IP-Subnetworking.html
http://www.linuxpowered.com/HOWTO/mini/IP-Subnetworking.html
http://www.linuxpowered.com/HOWTO/mini/IP-Subnetworking.html
http://www.iana.org/
http://www.iana.org/
http://www.isi.edu/in-notes/rfc1918.txt
http://www.isi.edu/in-notes/rfc1918.txt
http://www.isi.edu/in-notes/rfc1918.txt
http://www.iana.org/assignments/ipv4-address-space
http://www.iana.org/assignments/ipv4-address-space
http://www.isi.edu/in-notes/rfc3330.txt
http://www.isi.edu/in-notes/rfc3330.txt
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html
http://www.isi.edu/in-notes/rfc1911.txt
http://www.isi.edu/in-notes/rfc1911.txt
http://www.isi.edu/in-notes/rfc1911.txt
http://blue-labs.org/howto/mtu-mss.php
http://blue-labs.org/howto/mtu-mss.php
http://alive.znep.com/~marcs/mtu/
http://alive.znep.com/~marcs/mtu/
http://alive.znep.com/~marcs/mtu/
http://lartc.org/howto/lartc.cookbook.mtu-discovery.html
http://lartc.org/howto/lartc.cookbook.mtu-discovery.html
http://rr.sans.org/audit/more_ICMP.php
http://rr.sans.org/audit/more_ICMP.php
http://www.usenix.org/events/lisa02/tech/vanderberg.html
http://www.usenix.org/events/lisa02/tech/vanderberg.html
http://www.usenix.org/events/lisa02/tech/vanderberg.html
http://home.earthlink.net/~jaymzh666/mss/index.html
http://home.earthlink.net/~jaymzh666/mss/index.html
http://home.earthlink.net/~jaymzh666/mss/index.html
http://www.isi.edu/in-notes/rfc2923.txt
http://www.isi.edu/in-notes/rfc2923.txt
http://www.tldp.org/HOWTO/IP-Masquerade-HOWTO/
http://www.tldp.org/HOWTO/IP-Masquerade-HOWTO/
http://www.tldp.org/HOWTO/IP-Masquerade-HOWTO/
http://www.netfilter.org/unreliable-guides/NAT-HOWTO/NAT-HOWTO.linuxdoc.html
http://www.netfilter.org/unreliable-guides/NAT-HOWTO/NAT-HOWTO.linuxdoc.html
http://linux-ip.net/gl/ip-cref/node157.html
http://linux-ip.net/gl/ip-cref/node157.html
http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html
http://www.suse.de/~mha/linux-ip-nat/diplom/nat.html

Links to other Resources

Linas Vepstas has collected a number of links to projects and implementations relying heavily on
NAT [http://www.linas.org/linux/load.html] techniques.

1.6. iproute2 documentation

Timur A. Bolokhov has written a good (though dated) introduction [http://snafu.freedom.org/lin-
ux2.2/docs/advanced-routing/]. to the policy routing features of iproute2 (supported by kernels 2.1
and later).

Mark Lamb hosts a good technical overview [http://snafu.freedom.org/linux2.2/iproute-notes.html] of
both the iproute2 and tc packages.

If your copy of iproute2 did not get packaged with i p- cr ef . ps or if you prefer online HTML,
the command reference is available in toto asHTML at linux-ip.net [http://linux-ip.net/gl/ip-cref/],
www.linuxgrill.com [http://www.linuxgrill.com/iproute2.doc.html], or snafu.freedom.org [http://
snafu.freedom.org/linux2.2/docs/ip-cref/ip-cref.html].

Julian Anastasov has been working on many aspects of traffic control and advanced routing with the
iproute2 package. He has provided alarge number of patchesto iproute2 and some documentation
with for the linux virtual server (LVS) in addition to agreat deal of code for LVS. See his main site
[http://www.ssi.bg/~jal] for both patches and documentation.

The Linux Advanced Routing and Traffic Control [http://lartc.org/] site provides awealth of ex-
pertise for complex networking configurations. | also recommend the LARTC mailing list [http:/
mailman.ds9a.nl/mailman/listinfo/lartc] and archive [http://mailman.dsOa.nl/pipermail/lartc/].

A brief article distilled from Matthew Marsh's Policy Routing with Linux book, introduces the con-
cepts of policy routing under linux [http://www.unixreview.com/documents/s=1383/urmb16/] quite
admirably. For afifteen minute overview of policy routing under linux, read this article.

See this brief article on describing advanced networking [http://www.samag.com/documents/s=1824/
sam0201h/0201h.htm] features of linux.

1.7. Netfilter Resources

Visit Oskar Andreasson's iptables tutorial [http://iptables-tutorial.frozentux.net] for examples,
overview, details, and full documentation of iptables.

The netfilter site [http://www.netfilter.org/] provides awealth of tutorials, examples, documentation,
and amailing list. Of particular interest is the documentation section [http://www.netfilter.org/docu-
mentation/].

See this brief introduction [http://www.knowplace.org/netfilter/] to packet filtering with iptables.

Hereisabrief summary of the logging output [http://logi.cc/linux/netfilter-log-
format.php3#l Pheader] form from the netfilter engine.

1.8. ipchains Resources

Documentation for ipchains [http://www.netfilter.org/ipchaing/] is available courtesy of the au-
thor, Rusty Russell. A mirror of theipchains HOWTO [http://www.tldp.org/HOWTO/IPCHAINS-
HOWTO.html] isavailable at TLDP.

Hereisabrief summary of logging output [http://logi.cc/linux/ipchains-log-format.php3]from the ker-
nel.

163

http://www.linas.org/linux/load.html
http://www.linas.org/linux/load.html
http://www.linas.org/linux/load.html
http://snafu.freedom.org/linux2.2/docs/advanced-routing/
http://snafu.freedom.org/linux2.2/docs/advanced-routing/
http://snafu.freedom.org/linux2.2/docs/advanced-routing/
http://snafu.freedom.org/linux2.2/iproute-notes.html
http://snafu.freedom.org/linux2.2/iproute-notes.html
http://linux-ip.net/gl/ip-cref/
http://linux-ip.net/gl/ip-cref/
http://www.linuxgrill.com/iproute2.doc.html
http://www.linuxgrill.com/iproute2.doc.html
http://snafu.freedom.org/linux2.2/docs/ip-cref/ip-cref.html
http://snafu.freedom.org/linux2.2/docs/ip-cref/ip-cref.html
http://snafu.freedom.org/linux2.2/docs/ip-cref/ip-cref.html
http://www.ssi.bg/~ja/
http://www.ssi.bg/~ja/
http://lartc.org/
http://lartc.org/
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/pipermail/lartc/
http://mailman.ds9a.nl/pipermail/lartc/
http://www.unixreview.com/documents/s=1383/urmb16/
http://www.unixreview.com/documents/s=1383/urmb16/
http://www.samag.com/documents/s=1824/sam0201h/0201h.htm
http://www.samag.com/documents/s=1824/sam0201h/0201h.htm
http://www.samag.com/documents/s=1824/sam0201h/0201h.htm
http://iptables-tutorial.frozentux.net
http://iptables-tutorial.frozentux.net
http://www.netfilter.org/
http://www.netfilter.org/
http://www.netfilter.org/documentation/
http://www.netfilter.org/documentation/
http://www.netfilter.org/documentation/
http://www.knowplace.org/netfilter/
http://www.knowplace.org/netfilter/
http://logi.cc/linux/netfilter-log-format.php3#IPheader
http://logi.cc/linux/netfilter-log-format.php3#IPheader
http://logi.cc/linux/netfilter-log-format.php3#IPheader
http://www.netfilter.org/ipchains/
http://www.netfilter.org/ipchains/
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://logi.cc/linux/ipchains-log-format.php3
http://logi.cc/linux/ipchains-log-format.php3

Links to other Resources

Along with a huge pile of other linux-related traffic control and packet filtering documentation,
thereis a postscript reference card for ipchains [http://snafu.freedom.org/linux2.2/docs/ipchains-
refcard.letter.ps] at snafu.freedom.org.

1.9. ipfwadm Resources

Not covered in this documentation, ipfwadm is only supported in the linux 2.2 and 2.4 kernels via
backward compatible interfaces to the internal packet filtering architectures. Read more on ipfwadm
here [http://www.xos.nl/linux/ipfwadm/paper/].

1.10. General Systems References

To learn how to query the kernel's i ptables [http://www.tldp.org/HOWTO/Querying-libiptc-HOW-
TO/] directly, you need this progamming reference.

For a description of the path aframe on the wire takes [http://www.gnumonks.org/ftp/pub/doc/pack-
et-journey-2.4.html] through the kernel from the Ethernet through to the upper layers, Harald Welte's
brief provesinstructive.

If you are only interested in the path an | P packet takes through the netfilter (ipchains or iptables),
routing and ingress/egress QoS code, refer to Stef Coene's excellent ASCII representation, the kernel
2.4 packet traveling diagram [http://www.docum.org/stef.coene/qos/kptd/].

Oskar Andreasson (of iptables tutorial [http://iptables-tutorial .frozentux.net/] fame) has written an IP
sysctl tutorial [http://ipsysctl-tutorial .frozentux.net/] which coversthe different / pr oc filesystem en-
tries. (kernel 2.4 only)

1.11. Bridging

Y our linux box can function as a bridge, and two boxen connected to the same hubs can use Spanning
Tree Protocol (STP) to protect against failure of one or the other. See the Bridge HOWTO [http://
www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/index.html].

For abrief article on using alinux bridge as afirewall see David Whitmarsh's introduction [http://
www.sparkle-cc.co.uk/firewall/firewall.html] to the topic.

There's some fledgling documentation of the bridging codein kernel 2.4 (and 2.2) available, especial-
ly in conjunction with netfilter here [http://bridge.sourceforge.net/docs/].

Consider also, ebtables [http://users.pandora.be/bart.de.schuymer/ebtables/] named by analogy to ipt-
ables. If you are bridging at all, or using ebtables at all, you'll want to know about the interaction be-
tween bridging and iptables, so visit the bridge and Netfilter HOWTO [http://www.tldp.org/HOW-
TO/Ethernet-Bridge-netfilter-HOWTO.html].

1.12. Traffic Control

The Linux Advanced Routing and Traffic Control [http:/lartc.org/] websiteisthefirst place to go for
any traffic control (and advanced routing) documentation. | also recommend the LARTC mailing list
[http://mailman.ds9a.nl/mailman/listinfo/lartc] and archive [http://mailman.dsa.nl/pipermail/lartc/].

164

http://snafu.freedom.org/linux2.2/docs/ipchains-refcard.letter.ps
http://snafu.freedom.org/linux2.2/docs/ipchains-refcard.letter.ps
http://snafu.freedom.org/linux2.2/docs/ipchains-refcard.letter.ps
http://www.xos.nl/linux/ipfwadm/paper/
http://www.xos.nl/linux/ipfwadm/paper/
http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/
http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/
http://www.tldp.org/HOWTO/Querying-libiptc-HOWTO/
http://www.gnumonks.org/ftp/pub/doc/packet-journey-2.4.html
http://www.gnumonks.org/ftp/pub/doc/packet-journey-2.4.html
http://www.gnumonks.org/ftp/pub/doc/packet-journey-2.4.html
http://www.docum.org/stef.coene/qos/kptd/
http://www.docum.org/stef.coene/qos/kptd/
http://www.docum.org/stef.coene/qos/kptd/
http://iptables-tutorial.frozentux.net/
http://iptables-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/index.html
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/index.html
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO/index.html
http://www.sparkle-cc.co.uk/firewall/firewall.html
http://www.sparkle-cc.co.uk/firewall/firewall.html
http://www.sparkle-cc.co.uk/firewall/firewall.html
http://bridge.sourceforge.net/docs/
http://bridge.sourceforge.net/docs/
http://users.pandora.be/bart.de.schuymer/ebtables/
http://users.pandora.be/bart.de.schuymer/ebtables/
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://www.tldp.org/HOWTO/Ethernet-Bridge-netfilter-HOWTO.html
http://lartc.org/
http://lartc.org/
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/mailman/listinfo/lartc
http://mailman.ds9a.nl/pipermail/lartc/
http://mailman.ds9a.nl/pipermail/lartc/

Links to other Resources

« Stef Coene has written prodigiously on traffic control under linux [http://www.docum.org/]. His site
contains practical guidance on traffic control and bandwidth shaping matters.

» Thereisan ADSL Bandwidth Management HOWTO [http://www.tldp.org/HOWTO/ADSL -Band-
width-Management-HOWTO/] on TLDP.

» Michael Babcock has a page discussing QoS on linux [http://www.fibrespeed.net/~mbabcock/lin-
ux/qos _tc/]. Thisisagood introduction, though a bit dated (it seems to discuss only kernel 2.2).

 Leonardo Balliache's has published a brief overview of the compared QoS offerings [http://
www.opal soft.net/qos/].

» Saly Floyd is apparently one of the leading researchersin the use of QoS on the Internet. See her
work as aresearcher at icir.org [http://www.icir.org/floyd/].

» Another major research center for QoS under linux is the University of Kansas. For some very tech-
nical material on QoS under linux, see their main page [http://qos.ittc.ukans.edu/]. Here you will find
some documentation of the tools available to those programming for QoS implementations under lin-
Ux.

» Animplementation of DiffServ [http://diffserv.sourceforge.net/], is underway under linux. DiffServ
is an intermediate step to IntServ. There are aso the old DiffServ archive [http://www.atm.tut.fi/
list-archive/linux-diffserv/thrd6.html] and the current archive [http://sourceforge.net/mailarchive/
forum.php?forum=diffserv-general].

1.13. IPv4 Multicast

A dated multicast routing mini-HOWTO [http://jukie.net/~bart/multicast/Linux-Mrout-
ed-MiniHOWTO.html] provides the best introduction to multicast routing under linux.

e The smcroute [http://www.cschill.de/smcroute/] utility provides a command line interface to manipu-
|ate the multicast routing tables via a method other than mrouted.

1.14. Miscellaneous Linux IP Resources

» The sysctl utility is aconvenient tool for manipulating kernel parameters. Combined with the/ et ¢/
sysct | . conf thisutility allows an administrator to ater or tune kernel parametersin a convenient
fashion across a reboot. See this brief RedHat page on the use of sysctl [http://www.redhat.com/docs/
manual §/linux/RHL -7.3-Manual/ref-guide/s1-proc-sysctl.html]. See also Oskar Andreasson's | P Sysctl
Tutorial [http://ipsysctl-tutorial .frozentux.net/] for a detailed examination of the parameters and their
affect on system operation.

* For userswho need to provide a standards compliant VPN solution FreeS'WAN [http://
www.freeswan.org/] can be part of a good interoperable solution. Additionally, there are issues with
using FreeS/'WAN on linux as a VPN solution. John Denker (appropriate last name) has grappled with
the issue of IPSec and routing [http://www.quintillion.com/moat/ipsec+routing/iproute2.html] and has
suggested the following work around [http://www.quintillion.com/moat/ipsec+routing/i proute2.html].
Here's asummary of one network admin's perspective [http://www.quintillion.com/fdis/moat/
index.html] on some of the issues related to FreeS/'WAN, roving users and network administration
for VPN users. Note! The 2.5.x development kernel contains an | PSec implementation natively. This
means that by the release of 2.6.x, linux may support |PSec out of the box.

 Explicit Congestion Natification [http://www.icir.org/floyd/ecn.html] is supported under linux kernel
2.4 with asysctl entry.

165

http://www.docum.org/
http://www.docum.org/
http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management-HOWTO/
http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management-HOWTO/
http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management-HOWTO/
http://www.fibrespeed.net/~mbabcock/linux/qos_tc/
http://www.fibrespeed.net/~mbabcock/linux/qos_tc/
http://www.fibrespeed.net/~mbabcock/linux/qos_tc/
http://www.opalsoft.net/qos/
http://www.opalsoft.net/qos/
http://www.opalsoft.net/qos/
http://www.icir.org/floyd/
http://www.icir.org/floyd/
http://qos.ittc.ukans.edu/
http://qos.ittc.ukans.edu/
http://diffserv.sourceforge.net/
http://diffserv.sourceforge.net/
http://www.atm.tut.fi/list-archive/linux-diffserv/thrd6.html
http://www.atm.tut.fi/list-archive/linux-diffserv/thrd6.html
http://www.atm.tut.fi/list-archive/linux-diffserv/thrd6.html
http://sourceforge.net/mailarchive/forum.php?forum=diffserv-general
http://sourceforge.net/mailarchive/forum.php?forum=diffserv-general
http://sourceforge.net/mailarchive/forum.php?forum=diffserv-general
http://jukie.net/~bart/multicast/Linux-Mrouted-MiniHOWTO.html
http://jukie.net/~bart/multicast/Linux-Mrouted-MiniHOWTO.html
http://jukie.net/~bart/multicast/Linux-Mrouted-MiniHOWTO.html
http://www.cschill.de/smcroute/
http://www.cschill.de/smcroute/
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-proc-sysctl.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-proc-sysctl.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-proc-sysctl.html
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://ipsysctl-tutorial.frozentux.net/
http://www.freeswan.org/
http://www.freeswan.org/
http://www.freeswan.org/
http://www.quintillion.com/moat/ipsec+routing/iproute2.html
http://www.quintillion.com/moat/ipsec+routing/iproute2.html
http://www.quintillion.com/moat/ipsec+routing/iproute2.html
http://www.quintillion.com/moat/ipsec+routing/iproute2.html
http://www.quintillion.com/fdis/moat/index.html
http://www.quintillion.com/fdis/moat/index.html
http://www.quintillion.com/fdis/moat/index.html
http://www.icir.org/floyd/ecn.html
http://www.icir.org/floyd/ecn.html

Links to other Resources

The 2.2 and 2.4 series support bonding of interfaces which allows both link aggregation (IEEE
802.3ad) and failover use of Ethernet interfaces. The canonical source for documentation about bond-
ingisDocunent at i on/ net wor ki ng/ bondi ng. t xt inthe kernel source distribution.

If you are looking for virtual router redundancy protocol (VRRP) support under linux, there are sev-
eral fledgling options. The reference implementation [http://w3.arobas.net/~jetienne/vrrpd/] is (ac-
cording to LARTC scuttlebut) mostly a proof of concpt endeavor. At least one other implementa-
tion is available for linux--and this one has the reputation of being more practical: keepalived [http://
www.keepalived.org/].

If you want your linux box to support 802.1q VLAN tagging, you should read up on Ben Greear's site
[http://www.candel atech.com/~greear/vlan.html].

Don't forget the value of looking for the answer to your question in the linux-net mailing list archive
[http://www.uwsg.indiana.edu/hypermail/linux/net/].

Linux Journal has published atwo part article on by Gianluca Insolvibile describing the path a pack-
et takes through the kernel. Part | coversthe input of the packet until just before layer 4 processing
[http://www.linuxjournal.com/article.php?sid=4852]. Part |1 covers higher layer packet handling
[http://www.linuxjournal .com/article.php?sid=5617], including simple diagram of the kernel's deci-
sions for each | P packet [http://www.linuxjournal.com/modul es/N S-1j-issues/issue95/5617f1.png].

This PDF from the linux-kongress [http://www.linux-kongress.org/2002/papers/|k2002-heuven. pdf]
introduces some plans for MPLS and RSV P support under linux. (There are also many other interest-
ing papers [http://www.linux-kongress.org/2002/papers/] available here.) Another (the same?) MPLS
implementation [http://mpls-linux.sourceforge.net/] is available from SourceForge.

A clearly written but probably quite dated introduction [http://www.tldp.org/L DP/tlk/net/net.html] in
English to the kernel networking code was written by David Rusling. (An update/replacement to this
isunder development by David Rusling, although no URL is available.)

2. Links to Software
2.1. Basic Utilities

The net-tools [http://www.tazenda.demon.co.uk/phil/net-tools/] package is a collection of basic utili-
ties for managing the Ethernet and I1P layer under linux.

Theiproute2 package provides command-line support for the full functionality of the linux 1P stack.
This package, written by Alexey Kuznetsov, is available here [ftp://ftp.inr.ac.ru/ip-routing/] and is
mirrored here [http://www.linuxgrill.com/anonymous/fire/alexeyl/].

A tool more convenient than tracer oute for tracing routes, mtr [http://www.bitwizard.nl/mtr/] can be
obtained here [ftp://ftp.bitwizard.nl/mtr/].

The network swiss army knife of nc (NetCat) [http://www.atstake.com/research/tools/
index.html#network_utilities] is available from @stake.

For afar more flexible tool in the same vein as nc, socat [http://www.dest-unreach.org/socat/] con-
nects all manner of files, sockets, and file descriptors under most types of unix.

2.2. Virtual Private Networking software

CIPE [http://sites.inka.de/sites/bigred/devel/cipe.html] is a lightwei ght nonstandard VPN technology
which can use shared secrets or RSA keys. CIPE is developed primarily for linux but includes a Win-
dows port.

166

http://w3.arobas.net/~jetienne/vrrpd/
http://w3.arobas.net/~jetienne/vrrpd/
http://www.keepalived.org/
http://www.keepalived.org/
http://www.keepalived.org/
http://www.candelatech.com/~greear/vlan.html
http://www.candelatech.com/~greear/vlan.html
http://www.uwsg.indiana.edu/hypermail/linux/net/
http://www.uwsg.indiana.edu/hypermail/linux/net/
http://www.linuxjournal.com/article.php?sid=4852
http://www.linuxjournal.com/article.php?sid=4852
http://www.linuxjournal.com/article.php?sid=5617
http://www.linuxjournal.com/article.php?sid=5617
http://www.linuxjournal.com/modules/NS-lj-issues/issue95/5617f1.png
http://www.linuxjournal.com/modules/NS-lj-issues/issue95/5617f1.png
http://www.linuxjournal.com/modules/NS-lj-issues/issue95/5617f1.png
http://www.linux-kongress.org/2002/papers/lk2002-heuven.pdf
http://www.linux-kongress.org/2002/papers/lk2002-heuven.pdf
http://www.linux-kongress.org/2002/papers/
http://www.linux-kongress.org/2002/papers/
http://www.linux-kongress.org/2002/papers/
http://mpls-linux.sourceforge.net/
http://mpls-linux.sourceforge.net/
http://mpls-linux.sourceforge.net/
http://www.tldp.org/LDP/tlk/net/net.html
http://www.tldp.org/LDP/tlk/net/net.html
http://www.tazenda.demon.co.uk/phil/net-tools/
http://www.tazenda.demon.co.uk/phil/net-tools/
ftp://ftp.inr.ac.ru/ip-routing/
ftp://ftp.inr.ac.ru/ip-routing/
http://www.linuxgrill.com/anonymous/fire/alexey/
http://www.linuxgrill.com/anonymous/fire/alexey/
http://www.bitwizard.nl/mtr/
http://www.bitwizard.nl/mtr/
ftp://ftp.bitwizard.nl/mtr/
ftp://ftp.bitwizard.nl/mtr/
http://www.atstake.com/research/tools/index.html#network_utilities
http://www.atstake.com/research/tools/index.html#network_utilities
http://www.atstake.com/research/tools/index.html#network_utilities
http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
http://sites.inka.de/sites/bigred/devel/cipe.html
http://sites.inka.de/sites/bigred/devel/cipe.html

Links to other Resources

* For astandards based VPN technology, FreeS/'WAN [http://www.freeswan.org/download.html] pro-
vides I PSec functionality for the linux kernel. If you need an SRPM of the FreeSWAN | PSec soft-
ware, get it here [http://www.sandel man.ottawa.on.ca/freeswan/rpm/]. Note that development kernel
2.5.47+ contains kernel-native support for IPSec. Refer to the LARTC IPSec documentation [http://
lartc.org/howto/lartc.ipsec.html] for more on this.

2.3. Traffic Control queueing disciplines and command
line tools

» Martin Devera has written a queueing discipline called HTB [http://luxik.cdi.cz/~devik/qos/htb/]
which has been incorporated into the 2.4.20 kernel series. As of thiswriting, HTBv3 isincluded in
kernel 2.4.20+, but tc doesn't support htb without the patch available here [http://luxik.cdi.cz/~de-
vik/gog/htb/v3/htb3.6-020525.tgz].

» Weighted Round Robin is a queueing discipline which distributes bandwidth among the multiple open
connections. Although the wrr gdisc is not included in the kerndl, it is available here [http://wipl-
wrr.sourceforge.net/].

 Patrick McHardy has written a device which can be used independent of interface to perform traffic
shaping. The Intermediate Queueing Device (IMQ) [http://trash.net/~kaber/img/] is supported under
kernel 2.4 and provides support for ingress shaping and traffic shaping over multiple physical devices.
(Site was available here [http://luxik.cdi.cz/~patrick/ima/].)

» Werner Almesberger isworking on a more user friendly traffic control front end called tcng [http://
teng.sourceforge.net/]. This package includes a userspace simulator tcsim.

+ DiffServ

2.4. Interfaces to lower layer tools

A collection of various scripts and other interfaces for netfilter is available here [http://
www.linuxguruz.org/iptables/].

* A curses-based tool ipmenu [http://users.pandora.be/stes/ipmenu.html] provides asingle uniformin-
terface to many of the IP layer features of linux.

2.5. Packet sniffing and diagnostic tools

 Thetcpdump [http://www.tcpdump.org/] utility isawell known cross-platform utility for sniffing
traffic on the wire.

» To watch plaintext protocol conversations, the tcpflow [http://www.circlemud.org/~jel son/soft-
ware/tcpflow/] tool can be invaluable.

 To gather data on the nature and quality of the network path between two points, the bing [http://
www.cnam.fr/reseau/bing.html] program provides arunning set of statistics by calculating the delta
between ICMP echo replies from different hosts.

167

http://www.freeswan.org/download.html
http://www.freeswan.org/download.html
http://www.sandelman.ottawa.on.ca/freeswan/rpm/
http://www.sandelman.ottawa.on.ca/freeswan/rpm/
http://lartc.org/howto/lartc.ipsec.html
http://lartc.org/howto/lartc.ipsec.html
http://lartc.org/howto/lartc.ipsec.html
http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz
http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz
http://luxik.cdi.cz/~devik/qos/htb/v3/htb3.6-020525.tgz
http://wipl-wrr.sourceforge.net/
http://wipl-wrr.sourceforge.net/
http://wipl-wrr.sourceforge.net/
http://trash.net/~kaber/imq/
http://trash.net/~kaber/imq/
http://luxik.cdi.cz/~patrick/imq/
http://luxik.cdi.cz/~patrick/imq/
http://tcng.sourceforge.net/
http://tcng.sourceforge.net/
http://tcng.sourceforge.net/
http://www.linuxguruz.org/iptables/
http://www.linuxguruz.org/iptables/
http://www.linuxguruz.org/iptables/
http://users.pandora.be/stes/ipmenu.html
http://users.pandora.be/stes/ipmenu.html
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.cnam.fr/reseau/bing.html
http://www.cnam.fr/reseau/bing.html
http://www.cnam.fr/reseau/bing.html

Links to other Resources

To help diagnose problems between network points, the pathchar [http://www.caida.org/tool s/utili-
ties/others/pathchar/] tool can be handy. Unfortunately, it only comesin abinary release, apparently
because Van Jacobsen did not feel it was ready for full release.

Among the sniffing and spoofing tools, dsniff [http://monkey.org/~dugsong/dsniff/] has received good
press. It isa collection of tools for network auditing and penetration testing.

If you need to capture and reinject packets into the network, libnet [http://www.packetfactory.net/
Projects/Libnet/] isalibrary you can use for these purposes. Thisis a diagnostic and security tool.

To reproduce traffic from a captured file, use tcpreplay [http://tcpreplay.sourceforge.net/].

168

http://www.caida.org/tools/utilities/others/pathchar/
http://www.caida.org/tools/utilities/others/pathchar/
http://www.caida.org/tools/utilities/others/pathchar/
http://monkey.org/~dugsong/dsniff/
http://monkey.org/~dugsong/dsniff/
http://www.packetfactory.net/Projects/Libnet/
http://www.packetfactory.net/Projects/Libnet/
http://www.packetfactory.net/Projects/Libnet/
http://tcpreplay.sourceforge.net/
http://tcpreplay.sourceforge.net/

Appendix J. GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing it is not allowed.

1. PREAMBLE

The purpose of this Licenseis to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher away to get credit for their work, while not being considered responsible
for modifications made by others.

This Licenseis akind of "copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is hot limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this Li-
cense principally for works whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
aworld-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document”, below, refersto any such manual or work. Any member of the publicisali-
censee, and is addressed as "you". Y ou accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is anamed appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document's overall sub-
ject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus,
if the Document isin part atextbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be amatter of historical connection with the subject or with related mat-
ters, or of legal, commercial, philosophical, ethical or political position regarding them.

The"Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If asection
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sec-
tions then there are none.

169

GNU Free Documentation License

The"Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in aformat whose
specification is available to the general public, that is suitable for revising the document straightforward-
ly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automat-

ic trandation to avariety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readersis not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent” is called "Opague”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opague formats include proprietary formats that can be read and edit-
ed only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in thetitle page. For worksin formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of
the work's title, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XYZ
or contains XY Z in parentheses following text that translates XY Z in another language. (Here XY Z
stands for a specific section name mentioned below, such as " Acknowledgements', "Dedications’, "En-
dorsements’, or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License ap-
plies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Dis-
claimers may haveisvoid and has no effect on the meaning of this License.

3. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. Y ou may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must aso follow the conditionsin section 3.

Y ou may aso lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copiesin coversthat carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identi-

170

GNU Free Documentation License

fy you as the publisher of these copies. The front cover must present the full title with all words of the ti-
tle equally prominent and visible. Y ou may add other material on the covers in addition. Copying with
changes limited to the covers, aslong as they preserve the title of the Document and satisfy these condi-
tions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminousto fit legibly, you should put the first ones listed
(as many asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opague copy, or state in or with each
Opague copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opague copies in quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated location until at least one year after the last time you distribute an Opague copy (directly
or through your agents or retailers) of that edition to the public.

It isrequested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Docu-
ment.

5. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the Mod-
ified Version filling the role of the Document, thus licensing distribution and modification of the Mod-
ified Version to whoever possesses a copy of it. In addition, you must do these thingsin the Modified
Version:

A. Useinthe Title Page (and on the covers, if any) atitle distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). Y ou may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Doc-
ument (all of its principal authors, if it has fewer than five), unless they release you from this require-
ment.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, alicense notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Textsgivenin
the Document's license notice.

H. Include an unaltered copy of this License.

I. Preservethe section Entitled "History", Preserveits Title, and add to it an item stating at least the ti-
tle, year, new authors, and publisher of the Modified Version as given on the Title Page. If thereisno

171

GNU Free Documentation License

section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. Y ou may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements' or "Dedications’, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve dl the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled "Endorsements’. Such a section may not be included in the Modified Ver-
sion.

N. Do not retitle any existing section to be Entitled "Endorsements’ or to conflict in title with any In-
variant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections asinvariant. To do this, add their titlesto the list of Invariant Sectionsin the Modified
Version's license notice. These titles must be distinct from any other section titles.

Y ou may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
aBack-Cover Text, to the end of the list of Cover Textsin the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

6. COMBINING DOCUMENTS

Y ou may combine the Document with other documents rel eased under this License, under the terms de-
fined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with asingle copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in parenthe-
ses, the name of the original author or publisher of that section if known, or else a unique number. Make

172

GNU Free Documentation License

the same adjustment to the section titlesin the list of Invariant Sections in the license notice of the com-
bined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements”,
and any sections Entitled "Dedications’. Y ou must delete all sections Entitled "Endorsements”.

7. COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents rel eased under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy that
isincluded in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documentsin all other respects.

Y ou may extract a single document from such a collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into the extracted document, and follow this Licensein
all other respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on avolume of a storage or distribution medium, is called an "aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what
the individual works permit. When the Document is included an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document isless than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of coversif the Doc-
ument isin electronic form. Otherwise they must appear on printed covers that bracket the whole aggre-
gate.

9. TRANSLATION

Trandation is considered a kind of modification, so you may distribute trandlations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permis-
sion from their copyright holders, but you may include trandations of some or all Invariant Sectionsin
addition to the original versions of these Invariant Sections. Y ou may include atrandation of this Li-
cense, and all the license notices in the Document, and any Warrany Disclaimers, provided that you al-
so include the original English version of this License and the original versions of those notices and dis-
claimers. In case of a disagreement between the trandation and the original version of thisLicense or a
notice or disclaimer, the original version will prevail.

If asection in the Document is Entitled " Acknowledgements’, "Dedications”, or "History", the require-
ment (section 4) to Preserveits Title (section 1) will typically require changing the actual title.

10. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for un-
der this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and

173

GNU Free Documentation License

will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties re-
main in full compliance.

11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" appliesto it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify aversion
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

12. ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the Licensein the document and
put the following copyright and license notices just after thetitle page:

Copyright (¢) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
censeisincluded in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these exam-
plesin parallel under your choice of free software license, such asthe GNU General Public License, to
permit their use in free software.

174

Reference Bibliography and
Recommended Reading

Chandra Kopparapu. Copyright © 2002 unknown holder (FIXME). 0-471-41550-2. Load Balancing Servers, Fire-
walls, and Caches. John Wiley & Sons, Inc..

W. Richard Stevens. Copyright © 1994 Addison Wesley. 0-201-63346-9 (v.1). TCP/IP Illustrated, Volume |. Addi-
son Wesley.

Robert L. Ziegler. Copyright © 2001 New Riders. 0-2357-1099-6. Linux Firewalls. New Riders. 2001.

Rich Seifert. Copyright © 2000 Rich Seifert. 0-471-34586-5. The Switch Book. The Complete Guideto LAN
Switching Technology. John Wiley & Sons, Inc..

Tony Mancill. Copyright © 2000 Prentice Hall. 0-1308-6113-8. Linux Routers. Prentice Hall.

175

Index

A

Address Resolution Protocol (see ARP)
ARP, 15
duplicate address detection, 17
gratuitous, 17
(see also ARP reply)
unsolicited, 17
(see also ARP request)
ARP cache, 18
displaying, 18
expiration, 18
expiration sequence, 19
lifetime, 18
states, 18
ARP filtering, 24
ARP flux, 20
solving with arp_filter, 21
solving with hidden, 22
ARPreply, 16, 16
ARP request, 15, 16
ARP suppression, 20
ARRP, proxy, 23
with arp, 66
with kernel
medium id, 24
proxy_arp, 24
arping
basic usage, 16
duplicate address detection, 17
gratuitous, 17
unsolicited, 17
arp_filter, 21

B

bonding, 25

high availability, 27

link aggregation, 26
broadcast address (IP) (see IP addressing, broadcast ad-
dress)

C
channel bonding, 26

D
diagnostic tools, 143

E
Ethernet, 15

F

forwarding (see IP forwarding)
forwarding information base (see routing cache)

ICMP echo reply

tunnelling datain, 143
(see dso ping)

I P address, 30
(see dso IP addressing, address)

IP addressing
address, 30
broadcast address, 31
host address portion, 30
network address, 31
network mask, 31
octet, 30
prefix length, 31

ip arp, 24

IP forwarding, 33

IP Routing (see routing)

L

local routing table (see routing tables, local)
longest prefix match (see route selection, longest prefix
match)

M

main routing table (see routing tables, main)

N

neighbor table, 18
(see dso ARP cache)
netmask (see | P addressing, network mask)
netstat command, 151
displaying IP stack statistics (-s or --statistics), 155
displaying network interface statistics (-i or --inter-
face), 154
displaying socket status (--inet), 151
displaying the main routing table (-r or --route), 154
displaying the masquerading table (-M or --masqguer-
ade), 155
network address (see IP addressing, network address)
network mask (see | P addressing, network mask)

O

octet (see | P addressing, octet)

P

ping command, 143
basic use, 144
description of, 143

176

Index

(see dso ICMP echo request and ICMP echo re-
ply)
preferring a source address (-1), 148
quiet mode (-q), 145
recording aroute (-R), 146
sending specified number of packets (-c), 145
setting a TTL manualy (-t), 147
setting ToS flag manually (-Q), 148
specifying packet size (-s), 146
stressing a network (-f), 146
prefix length (see IP addressing, prefix length)
proxy ARP (see ARP, proxy)

R

route selection, 33
algorithm, 35
longest prefix match, 34
lookup keys, 35
route types (see routing tables, entry types)
router
operating as a, 33
Routing, 29
routing
to adefault gateway, 32
to locally reachable networks, 31
routing cache, 37
attributes
advmss, 38
age, 38
cwnd, 38
mtu, 38
rtt, 38
rttvar, 38
src, 38
used, 38
users, 38
lookup keys
dst, 37
fwmark, 37
iif, 38
src, 37
tos, 37
routing policy database (see RPDB)
routing tables
entry types, 38
blackhole, 41
broadcast, 40
local, 40
nat, 41
prohibit, 41
throw, 42
unicast, 40
unreachable, 41

key fields, 38

local, 42

main, 43

multiple, 38

RPDB, 43

entry types
blackhole, 45
nat, 44
prohibit, 44
unicast, 44
unreachable, 44

S

source address selection, 36
(see ad'so route selection)
sysctl
hidden, 22
ip_forward, 33
medium_id, 24
proxy_arp, 24

T

traceroute command, 149, 149
basic use, 149
setting ToS flags (-t), 150
using ICMP packets (-1), 150

\%
VLAN, 25

177

	Guide to IP Layer Network Administration with Linux
	Table of Contents
	Introduction
	1. Target Audience, Assumptions, and Recommendations
	2. Conventions
	3. Bugs and Roadmap
	4. Technical Note and Summary of Approach
	5. Acknowledgements and Request for Remarks

	Part I. Concepts
	Chapter 1. Basic IP Connectivity
	1. IP Networking Control Files
	2. Reading Routes and IP Information
	2.1. Sending Packets to the Local Network
	2.2. Sending Packets to Unknown Networks Through the Default Gateway
	2.3. Static Routes to Networks

	3. Changing IP Addresses and Routes
	3.1. Changing the IP on a machine
	3.2. Setting the Default Route
	3.3. Adding and removing a static route

	4. Conclusion

	Chapter 2. Ethernet
	1. Address Resolution Protocol (ARP)
	1.1. Overview of Address Resolution Protocol
	1.2. The ARP cache
	1.3. ARP Suppression
	1.4. The ARP Flux Problem
	1.4.1. ARP flux prevention with arp_filter
	1.4.2. ARP flux prevention with hidden

	2. Proxy ARP
	3. ARP filtering
	4. Connecting to an Ethernet 802.1q VLAN
	5. Link Aggregation and High Availability with Bonding
	5.1. Link Aggregation
	5.2. High Availability

	Chapter 3. Bridging
	1. Concepts of Bridging
	2. Bridging and Spanning Tree Protocol
	3. Bridging and Packet Filtering
	4. Traffic Control with a Bridge
	5. ebtables

	Chapter 4. IP Routing
	1. Introduction to Linux Routing
	2. Routing to Locally Connected Networks
	3. Sending Packets Through a Gateway
	4. Operating as a Router
	5. Route Selection
	5.1. The Common Case
	5.2. The Whole Story
	5.3. Summary

	6. Source Address Selection
	7. Routing Cache
	8. Routing Tables
	8.1. Routing Table Entries (Routes)
	8.2. The Local Routing Table
	8.3. The Main Routing Table

	9. Routing Policy Database (RPDB)
	10. ICMP and Routing
	10.1. MTU, MSS, and ICMP
	10.2. ICMP Redirects and Routing

	Chapter 5. Network Address Translation (NAT)
	1. Rationale for and Introduction to NAT
	2. Application Layer Protocols with Embedded Network Information
	3. Stateless NAT with iproute2
	3.1. Stateless NAT Packet Capture and Introduction
	3.2. Stateless NAT Practicum
	3.3. Conditional Stateless NAT

	4. Stateless NAT and Packet Filtering
	5. Destination NAT with netfilter (DNAT)
	5.1. Port Address Translation with DNAT

	6. Port Address Translation (PAT) from Userspace
	7. Transparent PAT from Userspace

	Chapter 6. Masquerading and Source Network Address Translation
	1. Concepts of Source NAT
	1.1. Differences Between SNAT and Masquerading
	1.2. Double SNAT/Masquerading

	2. Issues with SNAT/Masquerading and Inbound Traffic
	3. Where Masquerading and SNAT Break

	Chapter 7. Packet Filtering
	1. Rationale for and Introduction to Packet Filtering
	1.1. History of Linux Packet Filter Support

	2. Limits and Weaknesses of Packet Filtering
	2.1. Limits of the Usefulness of Packet Filtering
	2.2. Weaknesses of Packet Filtering
	2.3. Complex Network Layer Stateless Packet Filters

	3. General Packet Filter Requirements
	4. The Netfilter Architecture
	4.1. Packet Filtering with iptables

	5. Packet Filtering with ipchains
	5.1. Packet Mangling with ipchains

	6. Protecting a Host
	7. Protecting a Network
	8. Further Resources

	Chapter 8. Statefulness and Statelessness
	1.
	2. Statelessness of IP Routing
	3. Netfilter Connection Tracking
	3.1.
	3.2.

	Part II. Cookbook
	Chapter 9. Advanced IP Management
	1. Multiple IPs and the ARP Problem
	2. Multiple IP Networks on one Ethernet Segment
	3. Breaking a network in two with proxy ARP
	4. Multiple IPs on an Interface
	5. Multiple connections to the same Ethernet
	6. Multihomed Hosts
	7. Binding to Non-local Addresses

	Chapter 10. Advanced IP Routing
	1. Introduction to Policy Routing
	2. Overview of Routing and Packet Filter Interactions
	3. Using the Routing Policy Database and Multiple Routing Tables
	3.1. Using Type of Service Policy Routing
	3.2. Using fwmark for Policy Routing
	3.3. Policy Routing and NAT

	4. Multiple Connections to the Internet
	4.1. Outbound traffic Using Multiple Connections to the Internet
	4.2. Inbound traffic Using Multiple Connections to the Internet
	4.3. Using Multiple Connections to the Internet for Inbound and Outbound Connections

	Chapter 11. Scripts for Managing IP
	1. Proxy ARP Scripts
	2. NAT Scripts

	Chapter 12. Troubleshooting
	1. Introduction to Troubleshooting
	2. Troubleshooting at the Ethernet Layer
	3. Troubleshooting at the IP Layer
	4. Handling and Diagnosing Routing Problems
	5. Identifying Problems with TCP Sessions
	6. DNS Troubleshooting

	Part III. Appendices and Reference
	Appendix A. An Example Network and Description
	1. Example Network Map and General Notes
	2. Example Network Addressing Charts

	Appendix B. Ethernet Layer Tools
	1. arp
	2. arping
	3. ip link
	3.1. Displaying link layer characteristics with ip link show
	3.2. Changing link layer characteristics with ip link set
	3.3. Deactivating a device with ip link set
	3.4. Activating a device with ip link set
	3.5. Using ip link set to change the MTU
	3.6. Changing the device name with ip link set
	3.7. Changing hardware or Ethernet broadcast address with ip link set

	4. ip neighbor
	5. mii-tool

	Appendix C. IP Address Management
	1. ifconfig
	1.1. Displaying interface information with ifconfig
	1.2. Bringing down an interface with ifconfig
	1.3. Bringing up an interface with ifconfig
	1.4. Reading ifconfig output
	1.5. Changing MTU with ifconfig
	1.6. Changing device flags with ifconfig
	1.7. General remarks about ifconfig

	2. ip address
	2.1. Displaying interface information with ip address show
	2.2. Using ip address add to configure IP address information
	2.3. Using ip address del to remove IP addresses from an interface
	2.4. Removing all IP address information from an interface with ip address flush
	2.5. Conclusion

	Appendix D. IP Route Management
	1. route
	1.1. Displaying the routing table with route
	1.2. Reading route's output
	1.3. Using route to display the routing cache
	1.4. Creating a static route with route add
	1.5. Creating a default route with route add default
	1.6. Removing routes with route del

	2. ip route
	2.1. Displaying a routing table with ip route show
	2.2. Displaying the routing cache with ip route show cache
	2.3. Using ip route add to populate a routing table
	2.4. Adding a default route with ip route add default
	2.5. Setting up NAT with ip route add nat
	2.6. Removing routes with ip route del
	2.7. Altering existing routes with ip route change
	2.8. Programmatically fetching route information with ip route get
	2.9. Clearing routing tables with ip route flush
	2.10. ip route flush cache
	2.11. Summary of the use of ip route

	3. ip rule
	3.1. ip rule show
	3.2. Displaying the RPDB with ip rule show
	3.3. Adding a rule to the RPDB with ip rule add
	3.4. ip rule add nat
	3.5. ip rule del

	Appendix E. Tunnels and VPNs
	1. Lightweight encrypted tunnel with CIPE
	2. GRE tunnels with ip tunnel
	3. All manner of tunnels with ssh
	4. IPSec implementation via FreeS/WAN
	5. IPSec implementation in the kernel
	6. PPTP

	Appendix F. Sockets; Servers and Clients
	1. telnet
	2. nc
	3. socat
	4. tcpclient
	5. xinetd
	6. tcpserver
	7. redir

	Appendix G. Diagnostic Tools
	1. ping
	1.1. Using ping to test reachability
	1.2. Using ping to stress a network
	1.3. Recording a network route with ping
	1.4. Setting the TTL on a ping packet
	1.5. Setting ToS for a diagnostic ping
	1.6. Specifying a source address for ping
	1.7. Summary on the use of ping

	2. traceroute
	2.1. Using traceroute
	2.2. Telling traceroute to use ICMP echo request instead of UDP
	2.3. Setting ToS with traceroute
	2.4. Summary on the use of traceroute

	3. mtr
	4. netstat
	4.1. Displaying socket status with netstat
	4.2. Displaying the main routing table with netstat
	4.3. Displaying network interface statistics with netstat command
	4.4. Displaying network stack statistics with netstat
	4.5. Displaying the masquerading table with netstat

	5. tcpdump
	5.1. Using tcpdump to view ARP messages
	5.2. Using tcpdump to see ICMP unreachable messages
	5.3. Using tcpdump to watch TCP sessions
	5.4. Reading and writing tcpdump data
	5.5. Understanding fragmentation as reported by tcpdump
	5.6. Other options to the tcpdump command

	6. tcpflow
	7. tcpreplay

	Appendix H. Miscellany
	1. ipcalc and other IP addressing calculators
	2. Some general remarks about iproute2 tools
	3. Brief introduction to sysctl

	Appendix I. Links to other Resources
	1. Links to Documentation
	1.1. Linux Networking Introduction and Overview Material
	1.2. Linux Security and Network Security
	1.3. General IP Networking Resources
	1.4. Masquerading topics
	1.5. Network Address Translation
	1.6. iproute2 documentation
	1.7. Netfilter Resources
	1.8. ipchains Resources
	1.9. ipfwadm Resources
	1.10. General Systems References
	1.11. Bridging
	1.12. Traffic Control
	1.13. IPv4 Multicast
	1.14. Miscellaneous Linux IP Resources

	2. Links to Software
	2.1. Basic Utilities
	2.2. Virtual Private Networking software
	2.3. Traffic Control queueing disciplines and command line tools
	2.4. Interfaces to lower layer tools
	2.5. Packet sniffing and diagnostic tools

	Appendix J. GNU Free Documentation License
	1. PREAMBLE
	2. APPLICABILITY AND DEFINITIONS
	3. VERBATIM COPYING
	4. COPYING IN QUANTITY
	5. MODIFICATIONS
	6. COMBINING DOCUMENTS
	7. COLLECTIONS OF DOCUMENTS
	8. AGGREGATION WITH INDEPENDENT WORKS
	9. TRANSLATION
	10. TERMINATION
	11. FUTURE REVISIONS OF THIS LICENSE
	12. ADDENDUM: How to use this License for your documents

	Reference Bibliography and Recommended Reading
	Index

